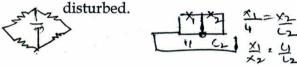

#### PART A - PHYSICS

# ALL THE GRAPHS/DIAGRAMS GIVEN ARE SCHEMATIC AND NOT DRAWN TO SCALE.

A particle is executing simple harmonic motion with a time period T. At time t = 0, it is at its position of equilibrium. The kinetic energy - time graph of the particle will look like:








- 2. The temperature of an open room of volume  $30 \text{ m}^3$  increases from  $17^{\circ}\text{C}$  to  $27^{\circ}\text{C}$  due to the sunshine. The atmospheric pressure in the room remains  $1 \times 10^5 \text{ Pa}$ . If  $n_i$  and  $n_f$  are the number of molecules in the room before and after heating, then  $n_f n_i$  will be:
  - (1)  $2.5 \times 10^{25}$ (2)  $-2.5 \times 10^{25}$ (3)  $-1.61 \times 10^{23}$ 
    - (4)  $1.38 \times 10^{23}$

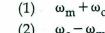
- 3. Which of the following statements is false?
  - (1) A rheostat can be used as a potential divider.
  - (2) Kirchhoff's second law represents energy conservation.
  - (3) Wheatstone bridge is the most sensitive when all the four resistances are of the same order of magnitude.

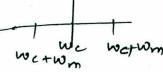
In a balanced wheatstone bridge if the cell and the galvanometer are exchanged, the null point is



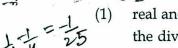
**4.** The following observations were taken for determining surface tension T of water by capillary method:

diameter of capillary,  $D=1.25\times10^{-2}$  m rise of water,  $h=1.45\times10^{-2}$  m.

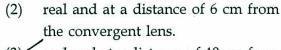

Using  $g=9.80 \text{ m/s}^2$  and the simplified relation  $T=\frac{rhg}{2}\times 10^3 \text{ N/m}$ , the possible error in surface tension is closest to:


B/Page 2

PV = NRT


SPACE FOR ROUGH WORK  $\frac{PV(\frac{1}{2} - \frac{1}{2})}{R(300 290)} = \frac{36 \times 10^{4}}{210} \left(\frac{1}{210} - \frac{1}{210}\right)$   $\frac{1 \times 30 \times 10^{3} \times 12}{210} \left(\frac{1}{210} - \frac{1}{210}\right)$   $\frac{1}{210} \times 10^{4} \times 10^{4} \times 10^{2} \times 10^{4} \times 10^{4$ 

In amplitude modulation, sinusoidal 5. carrier frequency used is denoted by  $\omega_c$ and the signal frequency is denoted by  $\omega_{\rm m}$ . The bandwidth  $(\Delta \omega_m)$  of the signal is such that  $\Delta\omega_m$ << $\omega_c$ . Which of the following frequencies is not contained in the modulated wave?

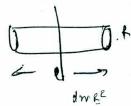





A diverging lens with magnitude of focal length 25 cm is placed at a distance of 15 cm from a converging lens of magnitude of focal length 20 cm. A beam of parallel light falls on the diverging lens. The final image formed is:



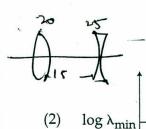
real and at a distance of 40 cm from the divergent lens.

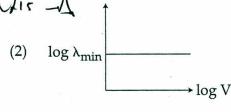



real and at a distance of 40 cm from convergent lens.

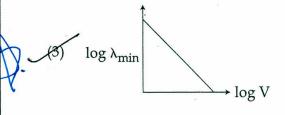
- virtual and at a distance of 40 cm from convergent lens.
  - 7. The moment of inertia of a uniform cylinder of length l and radius R about its perpendicular bisector is I. What is the ratio l/R such that the moment of inertia is minimum?



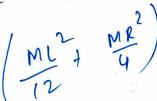


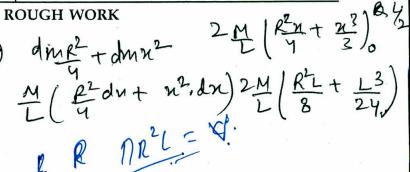




An electron beam is accelerated by a potential difference V to hit a metallic target to produce X-rays. It produces continuous as well as characteristic X-rays. If  $\lambda_{min}$  is the smallest possible wavelength of X-ray in the spectrum, the variation of  $\log \lambda_{min}$  with  $\log V$  is correctly represented


(1) $\log \lambda_{\min}$ 

log V




2B



 $log \, \lambda_{min}$ 





45(153)= m2 t

A radioactive nucleus A with a half life T, 9. decays into a nucleus B. At t=0, there is no nucleus B. At sometime t, the ratio of the number of B to that of A is 0.3. Then,

t is given by:

(1) 
$$t = T \log (1.3)$$

(2) 
$$t = \frac{T}{\log(1.3)}$$

$$t = T \log (1.3)$$

$$t = \frac{T}{\log (1.3)}$$

$$A_0 - A_1 = 0.3$$

(3) 
$$t = \frac{T}{2} \frac{\log 2}{\log 1.3}$$

$$t = T \frac{\log 1.3}{\log 2}$$

10. An electric dipole has a fixed dipole moment  $\stackrel{\rightarrow}{p}$  , which makes angle  $\theta$  with respect to x-axis. When subjected to an electric field  $\overrightarrow{E}_1 = \overrightarrow{E}_i$ , it experiences a torque  $\overrightarrow{T_1} = \tau \hat{k}$ . When subjected to another electric field  $\vec{E}_2 = \sqrt{3} \vec{E}_1 \hat{i}$  it experiences a torque  $\overrightarrow{T_2} = -\overrightarrow{T_1}$ . The angle  $\theta$  is:



In a common emitter amplifier circuit using an n-p-n transistor, the phase difference between the input and the output voltages will be:



Propo i + Penoj) x

 $C_p$  and  $C_v$  are specific heats at constant pressure and constant volume respectively. It is observed that

$$C_p - C_v = a$$
 for hydrogen gas

$$C_p - C_v = b$$
 for nitrogen gas

The correct relation between a and b is:

(1) 
$$a = 14 b$$

(2) 
$$a = 28 b$$

(3) 
$$a = \frac{1}{14}b$$

$$(4)$$
  $a=b$ 

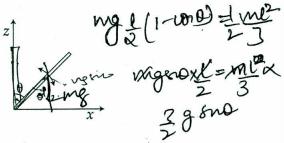
A copper ball of mass 100 gm is at a temperature T. It is dropped in a copper calorimeter of mass 100 gm, filled with 170 gm of water at room temperature. Subsequently, the temperature of the system is found to be 75°C. T is given by : (Given: room temperature = 30°C, specific heat of copper = 0.1 cal/gm°C)

A body of mass  $m = 10^{-2}$  kg is moving in a medium and experiences a frictional force  $F = -kv^2$ . Its initial speed is  $v_0 = 10 \text{ ms}^{-1}$ . If, after 10 s, its energy is  $\frac{1}{8} \text{ m} v_0^2, \text{ the value of } k \text{ will be :}$   $(1) \quad 10^{-4} \text{ kg m}^{-1} \quad -\frac{\text{d} v}{\text{at}} \times 10^{-2}$ 

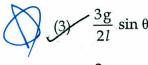
$$\frac{(1) \quad 10^{-4} \text{ kg m}^{-1} \quad -\frac{dv}{at} \times 10^{2}}{at} = Kv^{2}$$

(2) 
$$10^{-1} \text{ kg m}^{-1} \text{ s}^{-1}$$
  
(3)  $10^{-3} \text{ kg m}^{-1}$   $-\frac{dv}{V^2} = 100 \text{ kg}$ 

(3) 
$$10^{-3} \text{ kg m}^{-1}$$


(4) 
$$10^{-3} \text{ kg s}^{-1} = 10 \text{ kg}$$

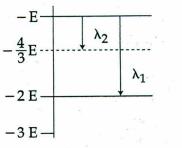
B/Page 4


SPACE FOR ROUGH WORK

= 45 + 75 (Panoî + lsnoj)îE = -(Panoî + lenoj) x 55 5 4 1=10KX + 172445 sno + PER = - 13 5 cono. 80 5 10 1=10KX

- When a current of 5 mA is passed through a galvanometer having a coil of resistance 15  $\Omega$ , it shows full scale deflection. The value of the resistance to be put in series with the galvanometer to convert it into a (2×2×1) voltmeter of range 0-10 V is :
- $2.535 \times 10^{3} \Omega$  $4.005 \times 10^{3} \Omega$ (5×5×10-3)  $1.985 \times 10^{3} \Omega$  $2.045 \times 10^{3} \Omega$ 10-0.075×10 0.015) X103
  - A slender uniform rod of mass M and 16. length *l* is pivoted at one end so that it can rotate in a vertical plane (see figure). There is negligible friction at the pivot. The free end is held vertically above the pivot and then released. The angular acceleration of the rod when it makes an angle  $\theta$  with the vertical is:




- $\frac{3g}{2l}\cos\theta$ (1)
- $\frac{2g}{3l}\cos\theta$



B/Page 5

 $\frac{2g}{3l}\sin\theta$ 

Some energy levels of a molecule are shown in the figure. The ratio of the wavelengths  $r = \lambda_1/\lambda_2$ , is given by:



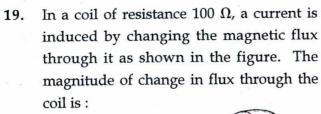
$$(1) r = \frac{3}{4}$$

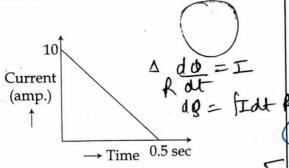
$$3 = \frac{\lambda_2}{\lambda_1}$$

$$r = \frac{1}{3}$$

$$(3) r = \frac{4}{3}$$

(4) 
$$r = \frac{2}{3}$$


A man grows into a giant such that his linear dimensions increase by a factor of 9. Assuming that his density remains same, the stress in the leg will change by a factor of:


(2) 
$$\frac{1}{81}$$

$$\frac{\vee \times 9}{A} = \frac{9}{9^2}$$

$$(4)$$
  $\frac{1}{9}$ 

SPACE FOR ROUGH WORK





(1) 250 Wb (2) 275 Wb

(3) 200 Wb 10 21 27 45 (4) 225 Wb 21 1+ 3

In a Young's double slit experiment, slits are separated by 0.5 mm, and the screen is placed 150 cm away. A beam of light consisting of two wavelengths, 650 nm

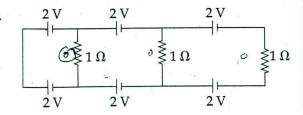
and 520 nm, is used to obtain interference fringes on the screen. The least distance from the common central maximum to the point where the bright fringes due to both the wavelengths coincide is:

24 (1) 9.75 mm  $6.18 + 8\pi$  (2) 15.6 mm 6.5 ...

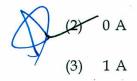
 $8 \times 22$  (3) 1.56 mm  $n_1 6 \times 8 = n_2 5 = 7 \times 46$  (4) 7.8 mm  $n_1 \times 5 = n_2 \times 4$ 

21. A magnetic needle of magnetic moment  $6.7 \times 10^{-2}$  Am<sup>2</sup> and moment of inertia  $7.5 \times 10^{-6}$  kg m<sup>2</sup> is performing simple harmonic oscillations in a magnetic field of 0.01 T. Time taken for 10 complete oscillations is:

(2) 8.76 s MBO ~ ~ (3) 6.65 s MBO ~ ~


g with distance d from centre of the earth is best represented by (R=Earth's radius):

(1)  $\frac{g}{Q} + \frac{3}{2}$   $\frac{3}{2}$   $\frac{3}{2}$ 


O R

 $(4) \qquad \begin{matrix} g \\ Q \\ R \end{matrix} \qquad d,$ 

B/Page 6 9 SPACE FOR ROUGH WORK  $\frac{9}{2121} = \frac{0.39}{80} = \frac{120 \times 61 \times 10^{-9}}{4} = \frac{120 \times 10^{-9}}{4} =$ 



In the above circuit the current in each resistance is:



24. A particle A of mass m and initial velocity v collides with a particle B of mass  $\frac{m}{2}$  which is at rest. The collision is head on, and elastic. The ratio of the de-Broglie wavelengths  $\lambda_A$  to  $\lambda_B$  after the collision is:



(1) 
$$\frac{\lambda_{A}}{\lambda_{B}} = \frac{2}{3} \quad \text{with} = \text{with} + \text{with} \quad \text{with}$$

(2) 
$$\frac{\lambda_{A}}{\lambda_{B}} = \frac{1}{2}$$
 
$$v_{2} - v_{l} = v_{l} + v_{2}$$

$$(3) \quad \frac{\lambda_{\rm A}}{\lambda_{\rm B}} = \frac{1}{3}$$



B/Page 7

25. An external pressure P is applied on a cube at 0°C so that it is equally compressed from all sides. K is the bulk modulus of the material of the cube and α is its coefficient of linear expansion. Suppose we want to bring the cube to its original size by heating. The temperature should be raised by:

(1) 
$$\frac{3\alpha}{PK}$$

(2) 3PKα

$$(4) \frac{P}{3\alpha K}$$

₩K=P

26. A time dependent force F=6t acts on a particle of mass 1 kg. If the particle starts from rest, the work done by the force during the first 1 sec. will be:

(1) 9 J

18 J

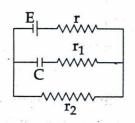
$$\frac{dy_{2}dt}{dt} = 3t^{2}$$

\_(3) 4.5 J (4) 22 J

(2)

27. An observer is moving with half the speed of light towards a stationary microwave source emitting waves at frequency 10 GHz. What is the frequency of the microwave measured by the observer?
✓ (speed of light=3×10<sup>8</sup> ms<sup>-1</sup>)

(1) 17.3 GHz (2) 15.3 GHz


(3) 10.1 GHz

(4) 12.1 GHz

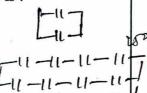


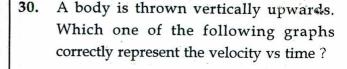
my/my/

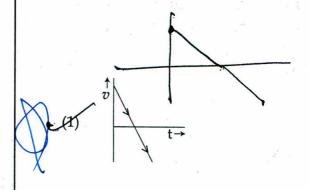
28. In the given circuit diagram when the current reaches steady state in the circuit, the charge on the capacitor of capacitance C will be:

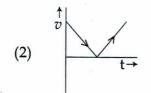


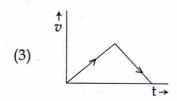



- (4) CE  $\frac{r_1}{(r_2+r)}$
- A capacitance of 2  $\mu F$  is required in an 29. electrical circuit across a potential difference of 1.0 kV. A large number of 1 μF capacitors are available which can withstand a potential difference of not 1000 more than 300 V.


The minimum number of capacitors required to achieve this is:





(3)

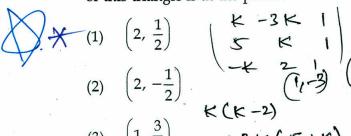

(4)














$$|\frac{1}{2}| - \frac{2}{4}|$$
  $|\frac{2}{4}|$   $|\frac{2}$ 

#### PART B - MATHEMATICS

Let k be an integer such that the triangle with vertices (k, -3k), (5, k) and (-k, 2)has area 28 sq. units. Then the orthocentre of this triangle is at the point:



(3) 
$$\left(1, \frac{3}{4}\right)$$
  $+3 \times (5+\kappa)$ 

(4) 
$$\left(1, -\frac{3}{4}\right)$$
 + 1 (10 +  $\kappa^{2}$ )
$$+ 2 \times + 15 \times + 3$$

$$+ 10 + \kappa^{2}$$

If, for a positive integer n, the quadratic 32, equation,

$$x(x+1) + (x+1)(x+2) + ....$$
  
+  $(x+\overline{n-1})(x+n) = 10n$  (3) an infinite set

has two consecutive integral solutions,

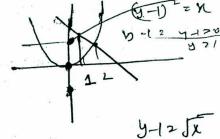
(2) 12 
$$+9K-9$$
 36.

The function 
$$f: \mathbf{R} \to \left[ -\frac{1}{2}, \frac{1}{2} \right]$$
 defined as  $f(x) = \frac{x}{1+x^2}$ , is:

- neither injective nor surjective. (1)
- (2)invertible.
- injective but not surjective. (3)
- surjective but not injective.

- 2K2+16K+10 = (~PA-9) va **34.** The following statement
- $(p\rightarrow q)\rightarrow[(\sim p\rightarrow q)\rightarrow q]$  is:
  - (1) a fallacy  $(\sim p \vee q) \rightarrow \lceil (p \vee q) \rightarrow q \rceil$ (2) a tautology (~pvq) -> (~pvq) V
  - (3) equivalent to  $\sim p \rightarrow q$
  - equivalent to p→~q
- (pva) [~pva) If S is the set of distinct values of 'b' for which the following system of linear

+3K(5+K)
equations
$$2+3 \qquad x+y+z=1$$
+1(i0+K²)
$$-1-1 \qquad x+ay+z=1$$


) has no solution, then S is:

a singleton

+ 1(b-a)

- (3)an infinite set
- a finite set containing two or more (4)elements n-y+2=1 -2+0y+2=0
- The area (in sq. units) of the region

$$y \le 1 + \sqrt{x}$$
 is:



(2) 
$$\frac{35}{12}$$

$$(3) \quad \frac{3}{2} \qquad \qquad \lambda + 1 + 5 \times = 3$$

(4) 
$$\frac{7}{3}$$
  $n + 5x - 2 = 0$    
 $(Jx+2)(Jx-1) \cdot D$ 

### B/Page 9



$$(1+u^2) - 7(2n)$$
 $1+u^2 = 2x^2$ 
 $u > 1$ 

$$(1+n^2)$$
 -  $\pi(2n)$   $\frac{n^2+n\leq 3\times 21}{4}$   
 $1+n\theta=2\times 2$   $\frac{1}{2}$   $\frac{1}{2}$ 

For any three positive real numbers a, b and c,  $9(25a^2 + b^2) + 25(c^2 - 3ac) = 15b(3a + c).$ Then:

a, b and c are in G.P. (1)

3= 59+48

b, c and a are in G.P.

b, c and a are in A.P.

a, b and c are in A.P.

ar25a+ 452 + 25c2- 75ac + 45ab +156c(4)

A man X has 7 friends, 4 of them are ladies and 3 are men. His wife Y also has 7 friends, 3 of them are ladies and 4 are men. Assume X and Y have no common friends. Then the total number of ways in which X and Y together can throw a party inviting 3 ladies and 3 men, so that 3 friends of each of X and Y are in this party, is:

(1)485

468 469

the 39. The normal to y(x-2)(x-3) = x+6 at the point where the curve intersects the y-axis passes y (6) = 6 (01) through the point:

dy (x-2)(x3)

(2)  $\left(-\frac{1}{2}, -\frac{1}{2}\right) \stackrel{ar}{+} y (2x-5) = 0$ 

aux6 +1(-5) =

(4)  $\left(\frac{1}{2}, -\frac{1}{3}\right)$  (y+) = -(h)

A hyperbola passes through the point 40.  $P(\sqrt{2}, \sqrt{3})$  and has foci at  $(\pm 2, 0)$ . Then the tangent to this hyperbola at P also passes through the point:

> (1) $(-\sqrt{2}, -\sqrt{3})$

(2)  $(3\sqrt{2}, 2\sqrt{3})$ 

 $(2\sqrt{2}, 3\sqrt{3})$ 

 $(\sqrt{3},\sqrt{2})$ 

Let a, b, c  $\in$  **R**. If  $f(x) = ax^2 + bx + c$  is such 41. かっすりのう that a+b+c=3 and f(x+y)=f(x)+f(y)+xy,  $\forall x, y \in \mathbb{R}$ , 2an + b

then  $\sum_{n=0}^{\infty} f(n)$  is equal to:

255 (1)

+(n+y) =+(n)+ y f'(y) = f'(0) +y

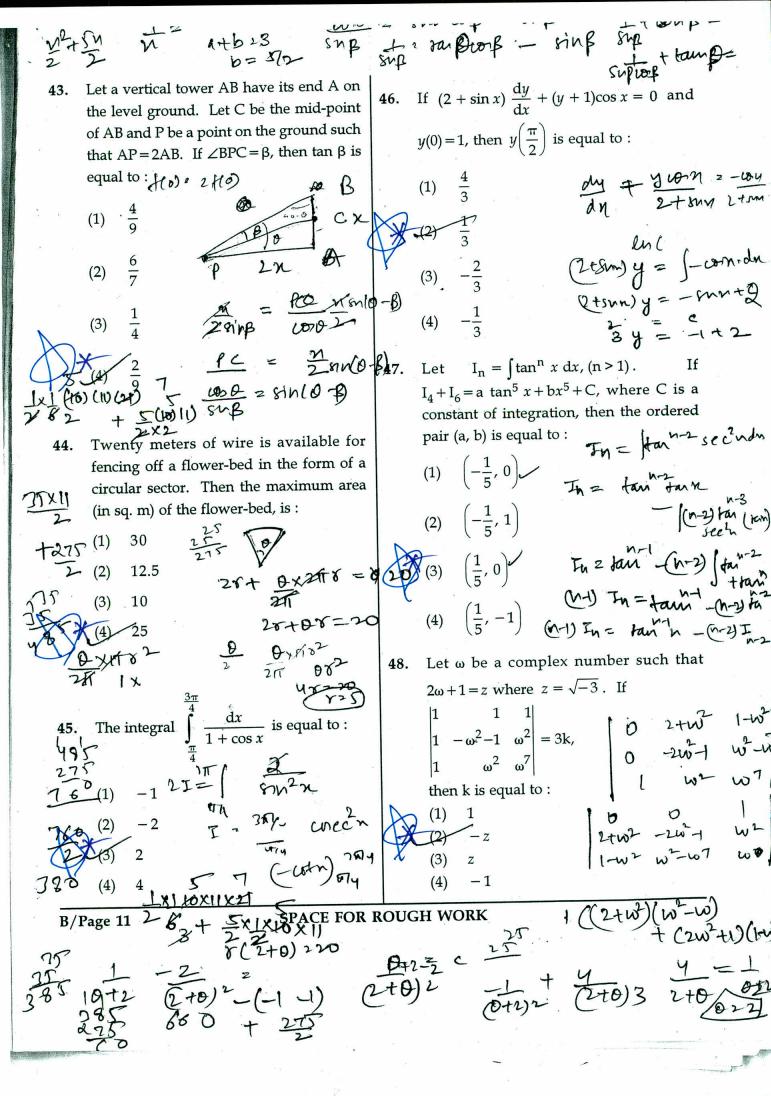
330

tho) y+ y2+ & c

Let  $\overrightarrow{a} = 2\overrightarrow{i} + \overrightarrow{j} - 2\overrightarrow{k}$  and  $\overrightarrow{b} = \overrightarrow{i} + \overrightarrow{j}$ . 42.

Let c be a vector such that  $\begin{vmatrix} \rightarrow & \rightarrow \\ c & -a \end{vmatrix} = 3$ ,

 $\begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix} \times \overrightarrow{c} = 3$  and the angle between


 $\stackrel{\rightarrow}{c}$  and  $\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}$  be 30°. Then  $\stackrel{\rightarrow}{a} \stackrel{\rightarrow}{c}$  is equal to: 18x5/140026

1c1+1912-29.c=9 192,8-29C28

**ROUGH WORK** (+ (4x3x3x4)

3 63 + 46,362 + 46,36, + 463,360 +

363.36,40 + 46,36236,46 + 46,36,x36,462 + 46,36



If for  $x \in \left(0, \frac{1}{4}\right)$ , the derivative of  $\tan^{-1}\left(\frac{6x\sqrt{x}}{1-9x^3}\right)$  is  $\sqrt{x} \cdot g(x)$ , then g(x)equals:

tar (tan 20)

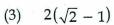
$$(1) \quad \frac{3}{1+9x^3}$$

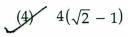
$$\frac{9}{1+9x^3}$$

Q tant (3nJn)

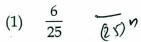
$$(3) \quad \frac{3x\sqrt{x}}{1-9x^3}$$

(4) 
$$\frac{3x}{1-9x^3}$$


9


The radius of a circle, having minimum 55. area, which touches the curve  $y=4-x^2$ and the lines, y = |x| is :

(1) 
$$4(\sqrt{2}+1)$$

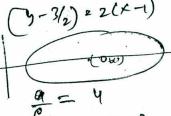



(2)  $2(\sqrt{2}+1)$ 

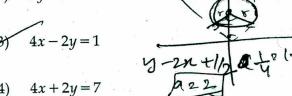




A box contains 15 green and 10 yellow 56. balls. If 10 balls are randomly drawn, one-by-one, with replacement, then the variance of the number of green balls drawn is:

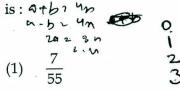






The eccentricity of an ellipse whose centre is at the origin is  $\frac{1}{2}$ . If one of its directrices

is x = -4, then the equation of the normal

to it at  $\left(1, \frac{3}{2}\right)$  is:




(1)



4+4=1 42+ 42=1 7=4(52-1) 2y-4n+120

If two different numbers are taken from the set {0, 1, 2, 3, ....., 10}; then the probability that their sum as well as absolute difference are both multiple of 4,





B/Page 13

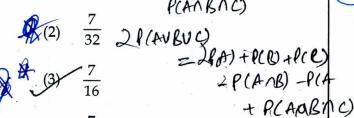
SPACE FOR ROUGH WORK

To. 15.

3.3 10x9 10x9 20 - 2w + 2w - 2w x x x - 2w x x x x - 2w x x x 362+ 762+360 WZ-W

### For three events A, B and C,

P(Exactly one of A or B occurs)


= P(Exactly one of C or A occurs) = 
$$\frac{1}{4}$$
 and

P(All the three events occur simultaneously) = 
$$\frac{1}{16}$$
.

Then the probability that at least one of the events occurs, is:

$$(1) \quad \frac{3}{16} \qquad \qquad P(AVB) - P(ANB) \cdot 1$$

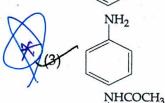
$$\Re(2)$$
  $\frac{7}{32}$   $\Im(AVBUC)$ 



(4) 
$$\frac{7}{64}$$

60. If 
$$A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$$
, then adj  $(3A^2 + 12A)$  is

equal to: 
$$\begin{bmatrix} 16 & -9 \\ -12 & 9 \end{bmatrix}$$


$$\begin{bmatrix} -84 & 51 \end{bmatrix}$$

$$(2) \quad \begin{bmatrix} 72 & -84 \\ -63 & 51 \end{bmatrix}$$

$$\begin{array}{c|cccc}
(4) & 51 & 84 \\
63 & 72
\end{array}$$

#### PART C - CHEMISTRY

#### 61. Which of the following compounds will form significant amount of meta product during mono-nitration reaction?



- $\Delta U$  is equal to : 62.
  - (1)Isochoric work
  - (2)Isobaric work
  - Adiabatic work Isothermal work
- 9:40 tw=00

世とエン堕

63. The increasing order of the reactivity of the following halides for the S<sub>N</sub>1 reaction

- (III) < (II) < (I) \*
- (II) < (I) < (III) >
- (I) < (III) < (II)
- (II) < (III) < (I)

### B/Page 14

$$\begin{pmatrix}
51 & -(-84) \\
-(-63) & 72
\end{pmatrix}$$

$$51 & 84 \\
63 & 72$$

The radius of the second Bohr orbit for 64. hydrogen atom is: (Planck's Const.  $h = 6.6262 \times 10^{-34}$  Js; mass of electron =  $9.1091 \times 10^{-31}$  kg; charge of electron  $e = 1.60210 \times 10^{-19}$  C;

> permittivity of vacuum  $\epsilon_0 = 8.854185 \times 10^{-12} \text{ kg}^{-1} \text{m}^{-3} \text{A}^2$

- 1.65 Å
- 4.76 Å (2)

0.529 Å (3)

41 2.12 Å

- $pK_a$  of a weak acid (HA) and  $pK_b$  of a weak base (BOH) are 3.2 and 3.4, respectively. The pH of their salt (AB) solution is:

7+1(32-3-4)

(4)

The formation of which of the following polymers involves hydrolysis reaction?

41 Nylon 6

- **Bakelite** (2)
- (3)Nylon 6, 6
- Terylene (4)
- The most abundant elements by mass in 67. the body of a healthy human adult are: Oxygen (61.4%); Carbon (22.9%), Hydrogen (10.0%); and Nitrogen (2.6%). The weight which a 75 kg person would gain if all <sup>1</sup>H atoms are replaced by <sup>2</sup>H atoms is:
  - (1)15 kg

(2)37.5 kg

7.5 kg

-7.5 + 227.5

- 10 kg (4)

Which of the following, upon treatment 68. with tert-BuONa followed by addition of bromine water, fails to decolourize the colour of bromine?

(2)

(3)

- (4)
- 69. In the following reactions, ZnO is respectively acting as a/an:

 $ZnO + Na_2O \rightarrow Na_2ZnO_2$ 

 $ZnO + CO_2 \rightarrow ZnCO_3$ (b)

base and acid (1)

base and base (2)

acid and acid (3)

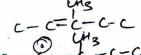
acid and base

5 18 + 4 14 = tan Sn

70. Both lithium and magnesium display several similar properties due to the diagonal relationship; however, the one which is incorrect, is:

> both form basic carbonates Mg (Wz) ~ (1)

both form soluble bicarbonates


both form nitrides (3)

nitrates of both Li and Mg yield NO2 (4)and O2 on heating

B/Page 15

SPACE FOR ROUGH WORK

- 3-Methyl-pent-2-ene on reaction with HBr in presence of peroxide forms an addition product. The number of possible stereoisomers for the product is:
  - (1)Six



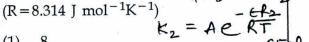
(2)Zero Two

Four



- A metal crystallises in a face centred cubic structure. If the edge length of its unit cell is 'a', the closest approach between two atoms in metallic crystal will be:
  - (1)2a

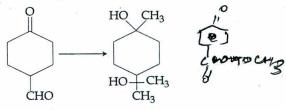



- (2)





Two reactions  $R_1$  and  $R_2$  have identical 73. pre-exponential factors. Activation energy of  $R_1$  exceeds that of  $R_2$  by 10 kJ mol<sup>-1</sup>. If  $\mathbf{k}_1$  and  $\mathbf{k}_2$  are rate constants for reactions R<sub>1</sub> and R<sub>2</sub> respectively at 300 K, then  $ln(k_2/k_1)$  is equal to:


Eq(R) = Eq(R) to



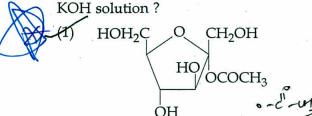
- 8 (1)
- (2)12

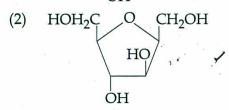
- (3)

The correct sequence of reagents for the 74. following conversion will be:



 $[Ag(NH_3)_2]^+OH^-$ ,  $H^+/CH_3OH$ , CH<sub>3</sub>MgBr


- H<sup>+</sup>/CH<sub>3</sub>OH, (2)CH<sub>3</sub>MgBr,  $[Ag(NH_3)_2]^+OH^-$
- $[Ag(NH_3)_2]^+OH^-$ , CH<sub>3</sub>MgBr, (3)H<sup>+</sup>/CH<sub>3</sub>OH
- [Ag(NH<sub>3</sub>)<sub>2</sub>]<sup>+</sup>OH<sup>-</sup>,CH<sub>3</sub>MgBr, (4)H<sup>+</sup>/CH<sub>3</sub>OH
- The Tyndall effect is observed only when 75. following conditions are satisfied:
  - The diameter of the dispersed particles is much smaller than the wavelength of the light used.
    - The diameter of the dispersed (b) particle is not much smaller than the wavelength of the light used.
  - The refractive indices of the (c) dispersed phase and dispersion medium are almost similar in magnitude.


The refractive indices of the dispersed phase and dispersion medium differ greatly in magnitude.

- (a) and (d) -
- (b) and (d) -
- (3)(a) and (c)
- (b) and (c) (4)

3/Page 16

76. Which of the following compounds will behave as a reducing sugar in an aqueous





(3) 
$$HOH_2C$$
  $O$   $CH_2OH$   $HO$   $OCH_3$   $\sim$ 

77. Given

$$C_{(graphite)} + O_2(g) \rightarrow CO_2(g)$$
;  
 $\Delta_r H^\circ = -393.5 \text{ kJ mol}^{-1}$ 

$$H_2(g) + \frac{1}{2}O_2(g) \to H_2O(1)$$
;

$$\Delta_{\rm r} {\rm H}^{\circ} = -285.8 \text{ kJ mol}^{-1}$$

$$CO_2(g) + 2H_2O(l) \rightarrow GH_4(g) + 2O_2(g)$$
;

$$\Delta_{r}H^{\circ} = +890.3 \text{ kJ mol}^{-1}$$

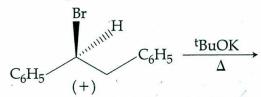
Based on the above thermochemical equations, the value of  $\Delta_{\rm r} {\rm H}^{\circ}$  at 298 K for the reaction

 $C_{(graphite)} + 2H_2(g) \rightarrow CH_4(g)$  will be :

- (1)  $+74.8 \text{ kJ mol}^{-1}$
- (2)  $+144.0 \text{ kJ mol}^{-1}$ 
  - $-74.8 \text{ kJ mol}^{-1}$
- (4)  $-144.0 \text{ kJ mol}^{-1}$

78. Which of the following reactions is an example of a redox reaction?

$$XeF_4 + O_2F_2 \rightarrow XeF_6 + O_2 \leftarrow$$


- (2)  $XeF_2 + PF_5 \rightarrow [XeF]^+ PF_6^-$
- (3)  $XeF_6 + H_2O \rightarrow XeOF_4 + 2HF$
- (4)  $XeF_6 + 2H_2O \rightarrow XeO_2F_2 + 4HF$
- **79.** The products obtained when chlorine gas reacts with cold and dilute aqueous NaOH are :
  - (1) CIO- and CIO<sub>3</sub>
  - (2)  $ClO_2^-$  and  $ClO_3^ Uo^- + U^-$
  - (3) CI and CIO

(4)

80. The major product obtained in the

CI- and CIO<sub>2</sub>

following reaction is:



- (1)  $(\pm)C_6H_5CH(O^tBu)CH_2C_6H_5$
- $C_6H_5CH = CHC_6H_5$
- (3)  $(+)C_6H_5CH(O^tBu)CH_2C_6H_5$
- (4)  $(-)C_6H_5CH(O^tBu)CH_2C_6H_5$
- 81. Sodium salt of an organic acid 'X' produces effervescence with conc. H<sub>2</sub>SO<sub>4</sub>. 'X' reacts with the acidified aqueous CaCl<sub>2</sub> solution to give a white precipitate which decolourises acidic solution of KMnO<sub>4</sub>. 'X' is:
  - (1) C<sub>6</sub>H<sub>5</sub>COONa
  - (2) HCOONa
  - (3) CH<sub>3</sub>COONa
  - (4) Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub>

B/Page 17

### SPACE FOR ROUGH WORK

$$C + 0/ \rightarrow c0/2 = -393.5$$

$$2H_2 + 9/2 \rightarrow 2H_20 = -2\times(285.8)$$

$$C0/2 + 21/0 \rightarrow UH_1 + 20/2 = 890.3$$

285.8 +968.1 -571.6 890.3 -393.5 74.8

ca (ivy

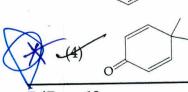
82. Which of the following species is not paramagnetic?

(1) NO (2) CO (3) O<sub>2</sub> ,

(4)  $B_2 \rightarrow$ 

83. The freezing point of benzene decreases by 0.45°C when 0.2 g of acetic acid is added to 20 g of benzene. If acetic acid associates to form a dimer in benzene, percentage association of acetic acid in benzene will be:

 $(K_f \text{ for benzene} = 5.12 \text{ K kg mol}^{-1})$ 


(1) 64.6%  $1 \times 5.12$ (2) 80.4%  $1 \times 60$   $1 \times 5.12$   $1 \times 60 \times 10^{12}$   $1 \times 60 \times 10^{12}$   $1 \times 60 \times 10^{12}$   $1 \times 60 \times 10^{12}$ 

84. Which of the following molecules is least resonance stabilized?

(1)

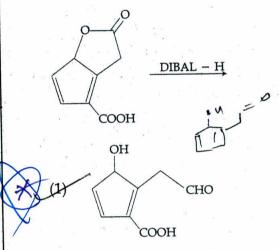


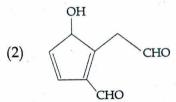


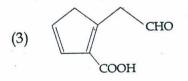


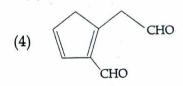
B/Page 18

C P | 24 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 1


85. On treatment of 100 mL of 0.1 M solution of CoCl<sub>3</sub>.6H<sub>2</sub>O with excess AgNO<sub>3</sub>;
1.2×10<sup>22</sup> ions are precipitated. The complex is:


(1) [Co(H<sub>2</sub>O)<sub>4</sub>Cl<sub>2</sub>]Cl.2H<sub>2</sub>O ~~2


(2)  $[Co(H_2O)_3Cl_3].3H_2O$ 


(3)  $[Co(H_2O)_6]Cl_3$   $\frac{[FZX10]}{6 \times 10^{23}}$  (4)  $[Co(H_2O)_5Cl]Cl_2.H_2O$ 

86. The major product obtained in the following reaction is:









### SPACE FOR ROUGH WORK

2,42 1-0/2 = 2.7 152 484 1284.84 484 ×110 121 95.12 2-42 XINX2= 8 2.70 5.12 2.92 128 128 1252 128 580 87. A water sample has ppm level concentration of following anions

$$F^-=10$$
;  $SO_4^{2-}=100$ ;  $NO_3^-=50$ 

The anion/anions that make/makes the water sample unsuitable for drinking is/ are:

- (1) only NO3
- both  $SO_4^{2-}$  and  $NO_3^{-}$
- (3) only  $F^-$
- (4) only  $SO_4^{2-}$
- 1 gram of a carbonate (M<sub>2</sub>CO<sub>3</sub>) on 20. treatment with excess HCl produces 0.01186 mole of CO<sub>2</sub>. The molar mass of  $M_2CO_3$  in g mol<sup>-1</sup> is:



- 1186
- 84.3
- 118.6
- 11.86

Given -1.36 89.  $E_{Cl_2/Cl}^{\circ} = 1.36 \text{ V}, E_{Cr^{3+}/Cr}^{\circ} = -0.74 \text{ V}$  $E_{Cr_2O_7^{2-}/Cr^{3+}}^{\circ} = 1.33 \text{ V}, E_{MnO_4^{-}/Mn^{2+}}^{\circ} = 1.51 \text{ V}.$ 

> Among the following, the strongest reducing agent is:

(1) Cr

- $Mn^{2+}$ (2)
- $Cr^{3+}$ (3)
- C1-(4)
- The group having isoelectronic species is:

$$O^{2-}$$
, F<sup>-</sup>, Na<sup>+</sup>, Mg<sup>2+</sup>

- (2) O<sup>-</sup>, F<sup>-</sup>, Na, Mg<sup>+</sup>
- (3) O<sup>2-</sup>, F<sup>-</sup>, Na, Mg<sup>2+</sup> NX+ (4) O<sup>-</sup>, F<sup>-</sup>, Na<sup>+</sup>, Mg<sup>2+</sup>

-000-

SPACE FOR ROUGH WORK

B/Page 21

#### Read the following instructions carefully:

- 1. The candidates should fill in the required particulars on the Test Booklet and Answer Sheet (Side-1) with Black Ball Point Pen.
- 2. For writing/marking particulars on *Side-2* of the Answer Sheet, use *Black Ball Point Pen only*.
- 3. The candidates should not write their Roll Numbers anywhere else (except in the specified space) on the Test Booklet/Answer Sheet.
- 4. Out of the four options given for each question, only one option is the correct answer.
- 5. For each *incorrect response*, ½ (one-fourth) marks of the total marks allotted to the question (i.e. 1 mark) will be deducted from the total score. No deduction from the total score, however, will be made *if no response* is indicated for an item in the Answer Sheet.
- 6. Handle the Test Booklet and Answer Sheet with care, as under no circumstances (except for discrepancy in Test Booklet Code and Answer Sheet Code), another set will be provided.
- 7. The candidates are not allowed to do any rough work or writing work on the Answer Sheet. All calculations/writing work are to be done in the space provided for this purpose in the Test Booklet itself, marked 'Space for Rough Work'. This space is given at the bottom of each page and in four pages (Page 20-23) at the end of the booklet.
- 8. On completion of the test, the candidates must hand over the Answer Sheet to the Invigilator on duty in the Room/Hall. However, the candidates are allowed to take away this Test Booklet with them.
- 9. Each candidate must show on demand his/her Admit Card to the Invigilator.
- 10. No candidate, without special permission of the Superintendent or Invigilator, should leave his/her seat.
- 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet again. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case. The candidates are also required to put their left hand THUMB impression in the space provided in the Attendance Sheet.
- Use of Electronic/Manual Calculator and any Electronic device like mobile phone, pager etc. is prohibited.
- 13. The candidates are governed by all Rules and Regulations of the Examination body with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Examination body.
- 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 15. Candidates are not allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, electronic device or any other material except the Admit Card inside the examination room/hall.

## FIITJ FARIDABAD

## JEE MAIN-2017 ANSWER KEYS

Date: 02-04-2017

Q.P.Code: B

|        |         | 4.1    | coue: b     |        |           |
|--------|---------|--------|-------------|--------|-----------|
| Q. No. | Physics | Q. No. | Mathematics | Q. No. | Chemistry |
| 1      | 2       | 31     | 1           | 61     | 3         |
| 2      | 2       | 32     | 1           | 62     | 3         |
| 3      | 4       | 33     | 4           | 63     | 2         |
| 4      | 4       | 34     | 2           | 64     | 4         |
| 5      | 3       | 35     | 1           | 65     | 2         |
| 6      | 3       | 36     | 1           | 66     | 1*        |
| 7      | 3       | 37     | 3           | 67     | 3         |
| 8      | 3       | 38     | 2           | 68     | 1         |
| 9      | 4       | 39     | 3           | 69     | 4         |
| 10     | 1       | 40     | 3           | 70     | 2         |
| 11     | 2       | 41     | 2           | 71     | 4         |
| 12     | 1       | 42     | 2           | 72     | 4         |
| 13     | 4       | 43     | 4           | 73     | 4         |
| 14     | 1       | 44     | 4           | 74     | 1         |
| 15     | 3       | 45     | 3           | 75     | 2         |
| 16     | 3       | 46     | 2           | 76     | 1         |
| 17     | 2       | 47     | 3           | 77     | 3         |
| 18     | 3       | 48     | 2           | 78     | 1         |
| 19     | 1       | 49     | 1           | 79     | 3         |
| 20     | 4       | 50     | 3           | 80     | 2         |
| 21     | 3       | 51     | 1           | 81     | 4         |
| 22     | 2       | 52     | 3           | 82     | 2         |
| 23     | 2       | 53     | 3           | 83     | 4         |
| 24     | 4       | 54     | 2           | 84     | 4         |
| 25     | 3       | 55     | 4           | 85     | 4         |
| . 26   | 3       | 56     | 2           | 86     | 1         |
| 27     | 1       | 57     | 3           | 87     | 3         |
| 28     | 1       | 58     | 2           | 88     | 2         |
| 29     | 2       | 59     | 3           | 89     | 1         |
| 30     | 1       | 60     | 3           | 90     | 1         |