RITS-45-PAPER-1 SOLUTIONS-CHEMISTRY

 The correct statement/s about the following reaction sequence is/are निम्न क्रमागत अभिक्रियाओं के बारे में कौनसा/कौनसे कथन सत्य है।

$$\begin{array}{c|c} & CI_g \ / \ FeCI_5 \\ \hline & (1) \\ \hline & (2) \\ \hline \\ & CH = N - NH \\ \hline \\ & O_gN \\ \hline \\ & (N)_5 + H_gSO_4, \Delta \\ \hline & (1) \\ \hline & (2) \\ \hline & (2) \\ \hline & (3) \\ \hline & (3) \\ \hline & (3) \\ \hline & (4) \\ \hline & (4) \\ \hline & (6) \\ \hline & (7) \\ \hline & (8) \\ \hline & (9) \\ \hline \end{array}$$

- (A) 'R' gives an aldol condenasation reaction on heating with NaOH solution
- (B) The compound 'Q' gives a yellow precipitate in acetone
- (C) Step '4' is an aromatic nucleophilic substitution reaction
- (D) The end product is a mixture of three compounds
- (A) "R' को NaOH विलयन के साथ गर्म करने पर यह ऐल्डोल संघनन अभिक्रिया देता है।
- (B) यौगिक 'Q' ऐसीटोन के साथ पीला अवश्रेप देता है।
- (C) पद '4' एक ऐरोमैटिक नाभिकस्नेही प्रतिस्थापन अभिक्रिया है।
- (D) अंतिम उत्पाद तीन यौगिकों का मिश्रण होगा।

Ans. (B, C)

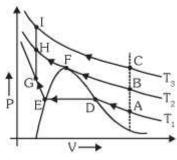
 Lead metal has a density of 11.34 g/cm³ and crystallizes in a face-centered lattice. Choose the correct alternatives

लैंड धातु का घनत्व $11.34~\mathrm{g/cm^3}$ है तथा यह फलक केन्द्रित जालक में क्रिस्टलीकृत होता हैं, तो सही विकल्प चनिये –

- (A) the volume of one unit cell is 1.214×10^{-22} cm³
- (B) the volume of one unit cell is 1.214×10^{-19} cm³
- (C) the atomic radius of lead is 175 pm
- (D) the atomic radius of lead is 155.1 pm
- (A) प्रत्येक एकक कोष्टिका का आयतन $1.214 \times 10^{-22} \text{ cm}^3$ है।
- (B) प्रत्येक एकक कोण्डिका का आयतन $1.214 \times 10^{-19} \text{ cm}^3$ है।
- (C) लैंड की परमाणु त्रिज्या 175 pm है।
- (D) लैंड की परमाण त्रिज्या 155.1 pm है।

Ans. (A, C)

Choose the correct statements.

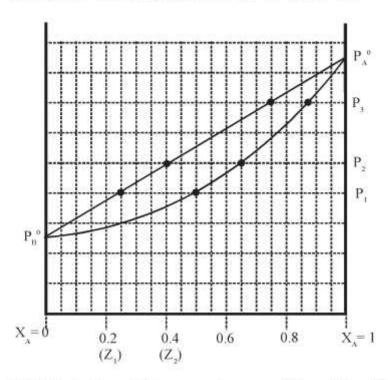

सत्य कथन का चुनाव कीजिये।

- (A) CH₃NCS molecule is linear
- (B) SiH₃NCS molecule is linear
- (C) GeH₃NCS molecule is linear
- (D) P(SiH₃)₃ molecule is pyramidal
- (A) CH2NCS अणु रेखीय होता है।
- (B) SiH2NCS अणु रेखीय होता है।
- (C) GeHaNCS अणु वंकित (bent) होता है
- (D) P(SiH3)3 अणु पिरामिडिय होता है।

Ans. (B, C, D)

 Isotherms of a real gas is represented as shown in diagram at three temperature T₁, T₂, T₃. From the graph, predict in which case gas-liquid transition will involve only one phase throughout.

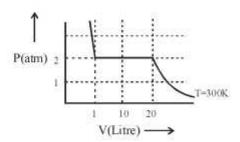
वास्तविक गैस के समतापीय आरेख निम्न प्रकार से तीन भिन्न तापों एवं $T_1,\,T_2,\,T_3$ पर दिखाये गये है। किस स्थिति में गैस-द्रव परिवर्तन एक ही अवस्था दिखाई देगी।



- (A) ADEG
- (C) BADE

- (B) ACIH
- (D) BCI

Ans. (B)


 With the help of following phase diagram. Select the correct statements : निम्न प्रावस्था चित्रण की सहायता से सही कथनों का चयन कीजिये।

- (A) Mole fraction of B in vapour at pressure P1 for solution Z2 is 0.5
- (B) Mole fraction of A in liquid at pressure P₃ for solution Z₂ is 0.4
- (C) Mole fraction of B in liquid at pressure P₁ for solution Z₂ is 0.75
- (D) Mole fraction of A in liquid at pressure P_2 for solution Z_1 is 0.4
- (A) विलयन Z_2 के लिए दाव P_1 पर वाष्प में B के मोल प्रभाज 0.5 है
- (B) विलयन ${\bf Z}_2$ के लिए दाब ${\bf P}_3$ पर द्रव में ${\bf A}$ के मोल प्रभाज 0.4 है
- (C) विलयन \mathbf{Z}_2 के लिए दाब \mathbf{P}_1 पर द्रव में \mathbf{B} के मोल प्रभाज 0.75 है
- (D) विलयन Z_1 के लिए दाब P_2 पर द्रव में A के मोल प्रभाज 0.4 है

6. A 1kg real gas is liquified at temperature 300K as shown in diagram. Select the correct statement:

300K तापक्रम पर 1 kg वास्तविक गैस चित्र में दिखाये अनुसार द्रवित होती है, सही कथन का चयन कीजिये।

- (A) 2 atm is vapour pressure of liquid at 300 K
- (B) Density of gas when V equals to 10 litre, is 0.1 gm / ml
- (C) Density of gas when V equals to 10 litre, is 0.05 gm / ml
- (D) Density of liquid when V equals to 10 litre, is 1 gm / ml
- (A) 300 K पर द्रव का वाष्प दाव 2 atm है
- (B) जब V, 10 लीटर है तो गैस का घनत्व 0.1 gm / ml है
- (C) जब V, 10 लीटर है तो गैस का घनत्व 0.05 gm / ml है
- (D) जब V, 10 लीटर है तो गैस का घनत्व 1 gm / ml है

Ans. (A, C, D)

7. In a FCC unit cell (FCC इकाई सैल में)

x = distance between two nearest OV (x = दो निकटतम OV के मध्य दूरी)

y = distance between two nearest T.V. (y = दो निकटतम T.V. के मध्य दूरी)

z= distance between nearest O.V. and T.V. (z= दो निकटतम O.V. तथा T.V. के मध्य दूरी)

Select the correct order of distance (दूरी के सही क्रम का चयन कीजिये)

$$(A) x = y = z$$

(B)
$$x < y < z$$

(C)
$$x > y < z$$

Ans. (D)

8. Highly pure dilute solution of sodium in liquid ammonia:

Na का द्रव अमोनिया में अत्यन्त शुद्ध तनु विलयन :

- (A) Shows blue colour.
- (B) Exhibits electrical conductivity and paramagnetism
- (C) The main species present in solution are solvated metal ion and solvated electron
- (D) On long standing, it produce blue crystals of sodium amide and evolve N₂
- (A) नीला रंग दर्शाता है।
- (B) विद्युतीय चालकता तथा अनुचुम्बकत्व प्रदर्शित करता है
- (C) विलयन में उपस्थित मुख्य स्पीशीज विलायकीकृत (solvated) धातु आयन तथा विलायकीकृत इलेक्ट्रॉन हैं
- (D) लम्बे समय तक रखा रहने पर, यह सोडियम ऐमाईड के नीले क्रिस्टल बनाता है तथा N_2 उत्सर्जित होती है

9,	Match the following Columns : (कॉलम क Column I	Column II
	Substance (पदार्थ)	Effects after heating (गर्म करने पर
	0.000	प्रभाव)
	(A) $(NH_4)_2Cr_2O_7$	(P) Show disproportion on heating गर्म करने पर विषमानुपातीकरण
	(B) HClO ₃	(Q) Shows colour change accompained by slight change in composition. संघटन में थोड़े से बदलाव के साथ रंग परिवर्तन
	(C) ZnO	(R) No changes on heating till melting पिघलने तक गर्म करने पर कोई परिवर्तन नहीं
	(D) Na ₂ CO ₃	(S) Undergoes intramolecular redox reaction on heating.
		गर्म करने पर अन्तराणुक रेडॉक्स अभिक्रिया
Ans.	$[(A) \rightarrow (S); (B) \rightarrow (P); (C) \rightarrow (Q);$	$(D) \rightarrow (R)$
10.	Match the following Columns : (कॉलम का मिलान करे:)	
	Column I	Column II
	(Order of reaction)	(Characteristics)
	(अभिक्रिया की कोटि)	(अभिलक्षण)
	[Assume single reactant is involved i	n rate law]
	[माना कि दर नियम में एक क्रियाकारक सम्मिलि	त है]
	(A) 0	(P) Half life remains constant throughout. अर्द्धआयुकाल नियत है।
	(B) 2	(Q) Second half life is double of first. दूसरा अर्द्धआयु प्रथम का दो गुना है।
	(C) 1	(R) Reaction gets completed in finite time. अभिक्रिया किसी निश्चित समय में पूरी हो जाती है।
	(D) 3	(S) Graph of log (rate of reaction) vs log (conc. of reactant) will have a slope equal to 3.
		माम १०० (अधिक्या की ट्य) प्राप्त (अधिक्या
		ग्राफ log (अभिक्रिया की दर) vs log (अभिक्रिया की सान्द्रता) की ढ़ाल 3 है।

11. Column-I

Electrolysis

(विद्युत अपघटन)

(A) Electrolysis of 100 Laqueous solution of CH₃COOK by passing 2F of electricity CH3COOK के 100 L जलीय विलयन का 2F विद्युत धारा प्रवाह द्वारा विद्युत अपघटन

- (B) Electrolysis of 10 L aqueous solution of HCOOK by passing 1F of electricity HCOOK के 10 L जलीय विलयन का 1F विद्युत धारा प्रवाह द्वारा विद्युत अपघटन
- (C) Electrolysis of 10 L aqueous solution of K2SO4 by passing 1F of electricity K₂SO₄ के 10 L जलीय विलयन का 1F विद्युत धारा प्रवाह द्वारा विद्युत अपघटन
- (D) Electrolysis of 10 Laqueous solution of CuF₂ by passing 1F of electricity CuF₂ के 10 L जलीय विलयन का 1F विद्युत धारा प्रवाह द्वारा विद्युत अपघटन

Column-II

pH at 298 K and products at anode and cathode (298 K पर pH तथा एनोड तथा कैथोड के उत्पाद)

- (P) pH = 12.3Anode = $Ethane(g) + CO_2(g)$ Cathode = $H_2(g)$
- (Q) pH = 13.0 $Anode = H_2(g) + CO_2(g)$ Cathode = $H_2(g)$
- (R) pH = 7.0Anode = O_2 (g) Cathode = $H_2(g)$
- (S) pH = 1.0Anode = O_2 (g) Cathode = Cu
- (T) pH = 2.0 $Anode = H_2(g) + CO_2(g)$ Cathode = $H_2(g)$

Ans.
$$[(A) \rightarrow (P); (B) \rightarrow (Q); (C) \rightarrow (R); (D) \rightarrow (S)]$$

12. Match the salts/mixtures listed in Column (I) with their respective name listed in Column (II).

कॉलम-। के लवण / मिश्रण को कॉलम-॥ से सुमेलित कीजिए।

Column-I

- (A) ZnS + BaSO₄ mixture (मिश्रण)
- (B) FeSO₄ (NH₄)₂SO₄. 6H₂O
- (C) AgNO₃
- (D) [Cu(NH₃)₄]SO₄

- (P) Lunar caustic (लुनार कास्टिक)
- (Q) Schwitzer's regent. (स्विटजर अभिकर्मक)
- (R) Lithopone (लिथोपोन)

Column-II

- (S) Mohr's salt (मोहर लवण)
- (T) Potash alum (फिटकरी)

 $[(A) \rightarrow (R); \quad (B) \rightarrow (S); \quad (C) \rightarrow (P); \quad (D) \rightarrow (Q)]$ Ans.

13. How many reactions involve syn addition? निम्न में से कितनी अभिक्रियाओं में, ' सिन योग ' होता है।

(a)
$$\xrightarrow{\operatorname{Br}_2}$$
 (b) $\xrightarrow{\operatorname{Nal}}$ $\xrightarrow{\operatorname{Nal}}$ $\xrightarrow{\operatorname{Acetone}}$ (c) $\xrightarrow{\operatorname{CH}_3\operatorname{CO}_3\operatorname{H}}$ (d) $\xrightarrow{\operatorname{D}_2}$ $\xrightarrow{\operatorname{(Pt)}}$ (e) $\xrightarrow{\operatorname{OsO}_4}$ (f) $\xrightarrow{\operatorname{(i)}}$ $\xrightarrow{\operatorname{B}_2\operatorname{H}_6(\operatorname{THF})}$ $\xrightarrow{\operatorname{(ii)}}$ $\xrightarrow{\operatorname{H}_2\operatorname{O}_2+\operatorname{OH}}$ $\xrightarrow{\operatorname{Baeyer's}}$

Ans. (6)

14. 6×10^{-3} mol $\rm K_2Cr_2O_7$ reacts completely with 9×10^{-3} mol $\rm X^{n+}$ to give $\rm XO_3^-$ and $\rm Cr^{+3}$ then value of n will be. 6×10^{-3} mol $\rm K_2Cr_2O_7$, 9×10^{-3} mol $\rm X^{n+}$ के साथ पूर्ण रूप से क्रिया करके $\rm XO_3^-$ तथा $\rm Cr^{+3}$ देता है तो $\rm n$ का मान क्या होगा।

Ans. (1)

NaBO₂ + H₂O₂ + H₂O → Product (उत्पाद)
Give number of B—O bond present in the product species. (उत्पाद में उपस्थित B—O बंधों की संख्या बताइये।)

Ans. (8)

Total number of optical isomers of above comopound are : दिये गए यौगिक के कुल प्रकाशिक समावयवियो की संख्या बताइये।

Ans. (4)

hydroquinone and quinone. When solid quinhydrone is dissolved in an aqueous medium, equal concentrations of hydroquinone and quinone result. If a platinum wire is dipped into the solution, the potential of the electrode is governed by the reversible reaction: एक अनुपात एक में, हाइड्रोक्वीनॉन तथा क्वीनॉन से निर्मित क्वीन हाइड्रॉन एक अल्प विलेय योगात्मक यौगिक होता है, जब दोस क्वीनहाइड्रॉन को जलीय माध्यम में घोला जाता है, तब समान सान्द्रता के हाइड्रोक्वीनॉन तथा क्वीनॉन प्राप्त होते हैं यदि एक प्लेटीनम के तार को विलयन में डुबाया जाता है तब इलेक्ट्रॉडों का विभव उत्क्रमणीय अभिक्रिया द्वारा नियंत्रित किया जाता है।

Quinhydrone is a sparingly soluble one is to one addition compound formed from

$$O + 2H^{+} + 2e \rightleftharpoons OH$$

$$O OH$$

$$(Q) OH$$

$$(H_{2}Q)$$

Where Q denotes quinone and H_2Q denotes hydroquinone. The E° value of this half cell reaction is $+0.46\,\mathrm{V}$ with respect to the saturated calomel reference electrode (SCE). Because the potential of the quinone-hydroquinone half reaction depends on the concentration of hydrogen ion, it is possible to use this system to measure pH. A sample solution of unknown pH was saturated with quinhydrone and a platinum electrode was dipped into it. If the reduction potential of the such electrode was found to be $+0.22\,\mathrm{V}$ with respect to SCE, what was the pH of the sample solution?

[Given:
$$\frac{2.303}{F} \frac{RT}{F} = 0.06$$
]

जहाँ Q-क्वीनॉन को तथा H_2Q हाइड्रोक्वीनॉन को बताता है। इस अर्थसेल अभिक्रिया का मानक कैलोमेल निर्देशी इलेक्ट्रॉड(SCE) के सापेक्ष E° मान +0.46 V है। क्योंकि क्वीनॉन – हाइड्रोक्वीनॉन अर्ध सैल अभिक्रिया का विभव हाइड्रोजन आयन की सान्द्रता पर निर्भर करता है, pH को मापने के लिए इस तंत्र का उपयोग किया जाना सम्भव है। क्वीनहाइड्रोन से संतृप्त अज्ञात pH का एक नमूना विलयन और इसमें डुबाया गया एक प्लेटीनम इलेक्ट्रॉड लिया गया है। यदि इस इलेक्ट्रॉड का विभव SCE के सापेक्ष +0.22 V पाया गया हो, तो इस नमूने विलयन की pH क्या होगी ?

[दिया है :-
$$\frac{2.303 \text{ RT}}{F}$$
 = 0.06]

Ans. (4)

17.

 Hoffmann reaction is found to follow the path. हॉफमैन अभिक्रिया निम्न पथ द्वारा प्राप्त होती है-

$$R = C - NH_{2} \xrightarrow{Br_{2}} R = C - NH - Br \xrightarrow{OH^{-}} R = C - N - Br$$

$$R = NH_{2} + CO_{2} \xrightarrow{H_{2}O} R - N = C = O \xrightarrow{R} R = C - N$$

the number of moles of NaOH used in the complete reaction for $1 \bmod of RCONH_2$ is/are

1 mol RCONH₂ से पूर्ण अभिक्रिया में प्रयोग में आने वाले कुल NaOH के मोलों की संख्या होगी-

Ans. (4)

- Find the number of CORRECT statements about NH₃ NH₃ के सन्दर्भ में सही कथनों की संख्या बताइये।
 - (i) basic gas क्षारीय गैस
 - (ii) turns red litmus to blue litmus लाल लिटमस को नीला करती है।
 - (iii) gives white dense furnes with HCl HCl के साथ श्वेत घने ध्रम देती है।
 - (iv) gives brown ppt. with nessler's reagent नेसलर अभिकर्मक के साथ भूरा अवक्षेप देती है।
 - (v) gives deep blue colour with CuSO₄ solution when passed in excess
 CuSO₄ विलयन में जब आधिक्य में प्रवाहित की जाती है तो गहरा नीला रंग देती है।
 - (vi) gives deep blue colour with ${
 m NiCl}_2$ solution when passed in excess ${
 m NiCl}_2$ विलयन में जब आधिक्य में प्रवाहित की जाती है तो गहरा नीला रंग देती है।
- Ans. (6)
- **20.** How many amides of molecular formula C_4H_9NO can show the hydrogen bonding : अणुसूत्र C_4H_9NO से कितने ऐमाइड हाइड्रोजन बन्धन प्रदर्शित कर सकते हैं।
- Ans. (6)

RITS-45-PAPER-1 SOLUTIONS-MATHEMATICS

21. Which of the following is/are correct : (निम्न में से कौनसा/कौनसे कथन सत्य होगा/होगें-)

(A)
$$\tan x - 3 \tan 3x = -\frac{8 \tan x}{1 - 3 \tan^2 x}$$

(B)
$$\frac{3 \tan 9^{\circ}}{1-3 \tan^2 9^{\circ}} + \frac{9 \tan 27^{\circ}}{1-3 \tan^2 27^{\circ}} = 12 \tan 9^{\circ}$$

(C)
$$\tan x - 2 \tan 2x = \frac{-3 \tan x}{1 - \tan^2 x}$$

(D)
$$\frac{3 \tan 9^{\circ}}{1-3 \tan^2 9^{\circ}} + \frac{9 \tan 27^{\circ}}{1-3 \tan^2 27^{\circ}} + \frac{27 \tan 81^{\circ}}{1-3 \tan^2 81^{\circ}} + \frac{81 \tan 243^{\circ}}{1-3 \tan^2 243^{\circ}} = 30 \tan 9^{\circ}$$

Ans. (A, D)

22. The solution of differential equation $3\frac{dx}{dy} = \frac{x}{x^3 - y}$ is $x^{\ell} = mx^ny + c$, then which of the

following is/are correct? (c is any arbitrary constant)

अवकल समीकरण $3\frac{dx}{dy} = \frac{x}{x^3 - v}$ का हल $x^\ell = mx^ny + c$ है, तो निम्नलिखित में से कौनसा /कौनसे

सत्य होगा/होगें

(c एक स्वेच्छ अचर है)

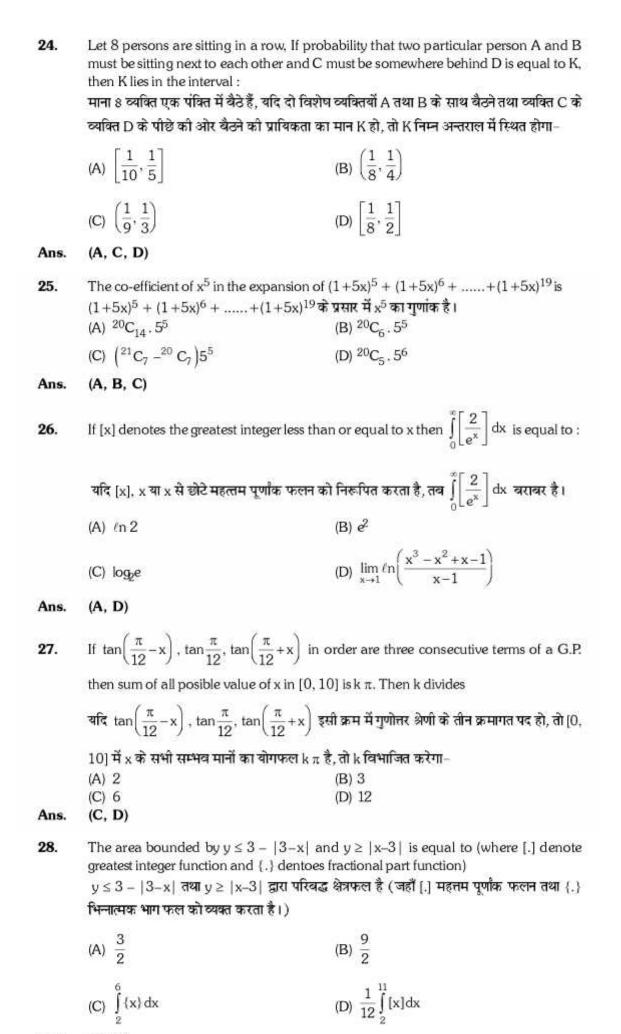
(A)
$$\ell + m + n = 11$$

(B)
$$\ell + n = 9$$

(C)
$$\ell + 2m = 10$$

(D)
$$m + n = 4$$

Ans. (A, B, C)


23. Let S denote the set of all real values of x such that $(x^{2010} + 1)(1 + x^2 + x^4 + + x^{2008}) = 2010x^{2009}$, then

माना S, x की सभी वास्तविक संख्याओं के समुच्चय को प्रदर्शित करता है ताकि

$$(x^{2010} + 1)(1 + x^2 + x^4 + \dots + x^{2008}) = 2010x^{2009} \frac{1}{8}, \frac{1}{6}$$

- (A) The number of elements in S is 2
- (B) The number of elements in S is 1
- (C) Point (x, 2) lies inside the parabola $y = x^2 2x + 2$
- (D) Image of the point (x, 2) in the line mirror y = x lies on x + y = 4
- (A) S में अवयवों की संख्या 2 है।
- (B) S में अवयवों की संख्या 1 है।
- (C) बिन्द (x, 2) परवलय $v = x^2 2x + 2$ के अन्दर स्थित है।
- (D) बिन्द (x, 2) का रेखीय दर्पण v = x में प्रतिबिम्ब x + v = 4 पर स्थित है।

Ans. (B, C)

Ans. (B, D)

29. Match the following Column:

Column-I

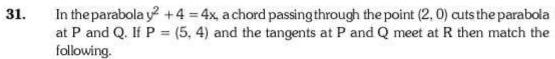
Column-II

(P) 36

- (A) The minimum value of ab if roots of the equation $x^3 ax^2 + bx 2 = 0$ are positive, is यदि समीकरण $x^3 ax^2 + bx 2 = 0$ के मूल धनात्मक है, तो ab का न्यनतम मान है।
- (B) The number of quadrilateral formed in an octagon having (Q) 9 two side common with the polygon अष्टभुज में बनने वाले चतुर्भुजों की संख्या, जिनकी दो भुजार्ये बहुभुज के साथ उभयनिष्ट हों।
- (C) If ${}^{2n}C_4$, ${}^{2n}C_5$ and ${}^{2n}C_6$ are in A.P. then value of 2n is ${}^{2n}C_4$, ${}^{2n}C_5$ तथा ${}^{2n}C_6$ समान्तर श्रेणी में है, तब 2n का मान है।
- (D) The value of $72 \sin \frac{\pi}{18} \sin \frac{5\pi}{18} \sin \frac{7\pi}{18}$ is (S) 14

 $72\sin\frac{\pi}{18}\sin\frac{5\pi}{18}\sin\frac{7\pi}{18}$ का मान है-

Ans. $[(A) \rightarrow (R); (B) \rightarrow (P); (C) \rightarrow (S); (D) \rightarrow (Q)]$


30. Match the following Column: (निम्नलिखित कॉलम को सुमेलित कीजिए-)

Column-II Column-II

- (A) If $\cos \theta \sin \theta = \cos \alpha \sin \alpha$ then the minimum value of $|\theta + \alpha| \text{ is } (\theta \alpha \neq m\pi)$ $\overline{\text{ ufg }} \cos \theta \sin \theta = \cos \alpha \sin \alpha \text{ $\frac{\pi}{8}$, $\frac{\pi}{1}$} |\theta + \alpha| \text{ $\frac{\pi}{4}$} = \overline{\text{ an }} = \overline{\text{ and }} = \overline{\text{ an }}$
- (B) In a $\triangle ABC$, if $A=90^\circ$ then $\tan^{-1}\frac{b}{c+a}+\tan^{-1}\frac{c}{a+b}$ is (Q) $\frac{\pi}{2}$ एक त्रिभुज ABC में, यदि $A=90^\circ$ है, तब $\tan^{-1}\frac{b}{c+a}+\tan^{-1}\frac{c}{a+b}$ होगा
- (C) If $x \in [0, \pi]$ and $\log_2(\tan x) + \log_2(\tan 2x) = 0$ then x is $(R) \quad \frac{\pi}{3}$ यदि $x \in [0, \pi]$ तथा $\log_2(\tan x) + \log_2(\tan 2x) = 0$ है, तब x होगा
- (D) In a $\triangle ABC$ if $\frac{\tan A \tan B}{\tan A + \tan B} = \frac{c b}{c}$ then A is (S) $\frac{\pi}{6}$

एक त्रिभुज ABC में, यदि $\frac{\tan A - \tan B}{\tan A + \tan B} = \frac{c - b}{c}$ है, तब A होगा

 $Ans. \quad [(A) \rightarrow (Q); \quad (B) \rightarrow (P); \quad (C) \rightarrow (S); \quad (D) \rightarrow (R)]$

किसी परवलय $y^2 + 4 = 4x$ को एक जीवा बिन्दु (2,0) से गुजरती हुई परवलय को बिन्दु P तथा Q पर कारती है। यदि P = (5, 4) तथा स्पर्श रेखार्ये P तथा Q बिन्द R पर मिलती है, तो निम्नलिखित को सुमेलित कीजिए-

Column-I

Column-II

(A) The focus is (नाभि है।)

- (P) $\left(0, \frac{3}{2}\right)$
- (B) The centroid of the ΔPQR is (রিপুর PQR का केन्द्रक है।)
- (Q) (2,0)
- (C) The circumcentre of the ΔPQR is (ΔPQR का परिकेन्द्र है।)
- (R) $\left(\frac{25}{12}, \frac{3}{2}\right)$

(S) $\left(\frac{25}{8}, \frac{3}{2}\right)$

- (D) The orthocentre of the ΔPQR is (ΔPQR का लम्बकेन्द्र है।)
- (T) None of these इनमें से कोई नहीं

Ans.

- $[(A) \rightarrow (Q); (B) \rightarrow (R); (C) \rightarrow (S); (D) \rightarrow (P)]$

Match the following: (निम्नलिखित कॉलम को सुमेलित कीजिए-) 32.

Column-I

Column-II (P) 3

(A) If $|z_1| = 12$ and $|z_2 - 3 - 4i| = 5$ then the minimum value of $|z_1 - z_2|$ is:

यदि $|z_1| = 12$ तथा $|z_2 - 3 - 4i| = 5$ है, तो $|z_1 - z_2|$ का न्यनतम मान है।

(B) If $\lim_{x\to 0} \frac{(1-\cos x)(e^x-\cos x)}{e^x}$ is a nonzero finite number

then the integer n is

यदि
$$\lim_{x\to 0} \frac{(1-\cos x)(e^x-\cos x)}{x^n}$$
 एक अशून्य परिमित संख्या है,

तो पर्णांक n का मान है।

(C) If $f(x) = \frac{1-x}{1+x}$ for x > 0 then the minimum value of

(R) 2

(S) 4

(Q) 1

$$f\{f(x)\}+f\left\{f\left(\frac{1}{x}\right)\right\}$$
 is

यदि
$$x > 0$$
 के लिए $f(x) = \frac{1-x}{1+x}$ है, तो $f\{f(x)\} + f\left\{f\left(\frac{1}{x}\right)\right\}$

का न्युनतम मान है।

(D) If z is a complex number satisfying $z\overline{z} - 2(z + \overline{z}) + 3 = 0$ then the greatest value of |z| is

यदि z एक सम्मिश्र संख्या $z\overline{z} - 2(z + \overline{z}) + 3 = 0$ को संतुष्ट करती है,

तो |z| का महत्तम मान है।

(T) None of these

 $[(A) \rightarrow (R); (B) \rightarrow (P); (C) \rightarrow (R); (D) \rightarrow (P)]$ Ans.

33. Let f be a derivable function satisfying f(x + y) = f(x) + f(y) + 2xy - 2, ∀x,y ∈ R and f'(0) = -2, then the number of real roots of f(x) = 0 is (are) माना f एक अवकलनीय फलन है जो f(x + y) = f(x) + f(y) + 2xy - 2, ∀x,y ∈ R को संतुष्ट करता है तथा f'(0) = -2 है, तो f(x) = 0 के वास्तविक मूलों की संख्या होगी

Ans. (0)

34. Let $f(x) = \frac{1}{e^x + 8e^{-x} + 4e^{-3x}}$, $g(x) = \frac{1}{e^{3x} + 8e^x + 4e^{-x}}$ and $\int (f(x) - 2g(x)) dx = h(x) + c \text{ (where 'c' is constant of integration) and}$ $\lim_{x \to \infty} h(x) = \frac{\pi}{4}. \text{ If } h(0) = \frac{1}{a} \tan^{-1} \left(\frac{b}{c}\right) \text{ (where } a \in \mathbb{N}, b \text{ and care coprime), then the}$ value of (a + b + c) is

माना $f(x) = \frac{1}{e^x + 8e^{-x} + 4e^{-3x}}$, $g(x) = \frac{1}{e^{3x} + 8e^x + 4e^{-x}}$ एवं $\int (f(x) - 2g(x)) dx = h(x) + c \quad (जहाँ 'c' समाकलन अचर है) तथा <math>\lim_{x \to \infty} h(x) = \frac{\pi}{4} \stackrel{\$}{\epsilon}$ । यदि $h(0) = \frac{1}{2} \tan^{-1} \left(\frac{b}{2}\right)$ (जहाँ $a \in \mathbb{N}$ b तथा c सहअभाज्य है) तो (a + b + c) का मान होगा

यदि $h(0) = \frac{1}{a} tan^{-1} \left(\frac{b}{c}\right)$ (जहाँ $a \in \mathbb{N}$, b तथा c सहअभाज्य है), तो (a + b + c) का मान होगा

Ans. (7)

35. Let $f:[3,4] \to [3,4]$ be a bijective decreasing function $\forall x \in [3,4]$, then the value of $\int_3^4 \Big(f(x) - f^{-1}(x)\Big) dx$ is $\text{ माना } \mathbf{H} \cdot \mathbf{H} \times \in [3,4] \text{ is } \text{ find } f:[3,4] \to [3,4] \text{ एक and Missing a suitarily weight } \mathbf{H}$

Ans. (0)

36. Let $A = \begin{bmatrix} -3 & 0 & 2 \\ 1 & x & 5 \\ -2 & 0 & x^2 \end{bmatrix}$, $B = \begin{bmatrix} 2 \\ b \\ -1 \end{bmatrix}$ and $C = \begin{bmatrix} 3 & 5 & 1 \end{bmatrix}$, then the number of integral

value(s) of 'b' for which $Tr(ABC) \le -18 \forall x \in R$ is (are)

माना $A = \begin{bmatrix} -3 & 0 & 2 \\ 1 & x & 5 \\ -2 & 0 & x^2 \end{bmatrix}, B = \begin{bmatrix} 2 \\ b \\ -1 \end{bmatrix}$ तथा $C = \begin{bmatrix} 3 & 5 & 1 \end{bmatrix}$ है, तो 'b' के पूर्णांक मानों की संख्या,

जिसके लिये Tr(ABC) ≤ - 18 ∀ x ∈ R है, होगी

Ans. (5)

37. The plane x+2y+3z=7 is rotated about the line where it cut yz – plane by an angle θ . In the new position the plane contains the point (-1,0,2). If $\left|\cos\theta\right|=\frac{p}{q}$ (where p and q are coprime) then the absolute value of (p-q) is समतल x+2y+3z=7 को उस रेखा के सापेक्ष घुमाया जाता है, जहाँ यह yz समतल को कोण θ पर काटता है। इस नयी स्थित में बिन्दु (-1,0,2) समतल पर है। यदि $\left|\cos\theta\right|=\frac{p}{q}$ (जहाँ p तथा q सहअभाज्य है), तो (p-q) का निरपेक्ष मान होगा

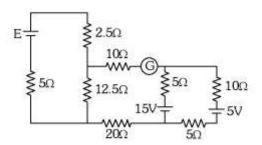
Ans. (1)

38. If
$$S = \frac{3}{5} + \frac{10}{5^2} + \frac{21}{5^3} + \frac{36}{5^4} + \frac{55}{5^5} + \dots \infty$$
 then 4S is equal to :
$$\overline{\text{4fc S}} = \frac{3}{5} + \frac{10}{5^2} + \frac{21}{5^3} + \frac{36}{5^4} + \frac{55}{5^5} + \dots \infty \stackrel{?}{\text{$\rlap{$8$}$}}, \, \overline{\text{ch}} \, 4S \, \overline{\text{4N ext $\rlap{$8$}$}} - \frac{3}{5^5} + \frac{36}{5^5} + \frac{55}{5^5} + \dots \times \frac{3}{5^5}, \, \overline{\text{ch}} \, 4S \, \overline{\text{4N ext $\rlap{$8$}$}} + \frac{3}{5^5} + \frac{3}{5^5} + \dots \times \frac{3}{5^5$$

Ans. (5)

$$\begin{aligned} \textbf{39.} \qquad & \text{If } I(n) = \int\limits_0^x \ell n (1 - 2n\cos x + n^2) dx \text{ , then } \frac{I(100)}{I(10)} \cdot \frac{I(36)}{I(6)} \text{ is equal to} \\ \\ & \text{ \overline{q} $$ $$ \overline{q} $$ $$ \overline{q} $$ $$ $I(n) = \int\limits_0^\pi \ell n (1 - 2n\cos x + n^2) dx \text{ } \frac{\$}{\$}, \text{ \overline{q} $$} \frac{I(100)}{I(10)} \cdot \frac{I(36)}{I(6)} \text{ \overline{q} $$} \end{aligned}$$

Ans. (4)


40. Let q, r are unit vectors such that p = q × p + r and M is the maximum value and m is the minimum value of [pq r], then 6(M + m) is equal to माना q, r इकाई सदिश इस प्रकार है कि p = q × p + r तथा [pq r] का अधिकतम मान M तथा न्यूनतम मान m हो, तो 6(M + m) बराबर होगा

Ans. (3)

RITS-45-PAPER-1 SOLUTIONS-PHYSICS

 If galvanometer shows no deflection in the given circuit. The value of E is (all batteries are ideal)

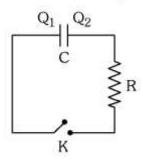
यदि परिपथ में गैल्वेनोमीटर कोई विक्षेप प्रदर्शित नहीं करता है, तो E का मान है- (सभी बैटरी आदर्श है)

- (A) the value of E is 10 volt
- (B) the value of E is 20 volt
- (C) the value of current passing through 20 Ω resistance is zero
- (D) the battery of emf 5 volt is charging at the rate of 2.5 W
- (A) E का मान 10 volt है
- (B) E का मान 20 volt है
- (C) 20 Ω के प्रतिरोध से प्रवाहित होने वाली धारा शुन्य है
- (D) 5 volt विद्युत वाहक बल वाली बैटरी 2.5W की दर से आवेशित हो रही है

Ans. (B, C, D)

42. Which of the following statement(s) is/are correct?

सही कथन/कथनों को चुनिये:-

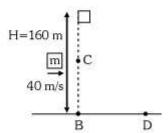

- (A) For hydrogen like atoms if quantum number is very large then the frequency of photon emitted when electron jumps from an orbit to next lower energy orbit is equal to frequency of revolution of electron in original orbit
- (B) Electron debroglie wavelength depends on kinetic energy of electron
- (C) Energy of electrons is quantized in Li⁺⁺ atom
- (D) Electrons cannot exists inside nucleus because they are attracted by protons inside nucleus
- (A) हाइड्रोजन सदृश्य परमाणुओं के लिये यदि क्वांटम संख्या का मान बहुत अधिक हो तो इलेक्ट्रॉन द्वारा किसी कक्षा से अगली कम ऊर्जा वाली कक्षा में कूदने के कारण उत्सर्जित फॉटोन की आवृति, मूल कक्षा में इलेक्ट्रॉन के चक्कर लगाने की आवृति के तुल्य होती है।
- (B) इलेक्ट्रॉन की डी-ब्रॉग्ली तरंगदैध्यं इलेक्ट्रॉन की गतिज ऊर्जा पर निर्भर करती है।
- (C) Li⁺⁺ परमाण् में इलेक्ट्रॉनों की ऊर्जा क्वांटीकृत होती है।
- (D) नाभिक के अंदर इलेक्ट्रॉन विद्यमान नहीं हो सकते क्योंकि ये नाभिक के अंदर प्रोटोनों द्वारा आकर्षित किये जाते है।

- 43. A circuit, containing an inductance and a resistance connected in series, has an AC source of 200 V, 50 Hz connected across it. An AC current of 10 A rms flows through the circuit and the power loss is measured to be 1kW.

 एक परिपथ, जिसमें प्रेरक कुण्डली और प्रतिरोध श्रेणी क्रम में लगें हैं, को 200 V, 50 Hz के प्रत्यावर्ती धारा स्त्रोत से जोड़ा जाता है। 10A वर्ग माध्य मूल मान की प्रत्यावर्ती धारा परिपथ में प्रवाहित होती है तथा शक्ति में हानि 1kW मापी जाती है।
 - (A) The inductance of the circuit is $\frac{\sqrt{3}}{10\pi}$ H.
 - (B) The frequency of the AC when the phase difference between the current and emf becomes $\pi/4$, with the above components is $\frac{50}{\sqrt{3}}$ Hz.
 - (C) The frequency of AC, at which the reactive power is half of the actual power loss is $\frac{25}{\sqrt{3}}$ Hz
 - (D) The frequency of the AC when the phase difference between the current and emf becomes $\pi/4$, with the above components is $\frac{25}{\sqrt{3}}$ Hz.
 - (A) परिपथ का प्रेरकत्व $\frac{\sqrt{3}}{10\pi}$ H है।
 - (B) जब धारा तथा वि.वा.बल के बीच का कलान्तर उपर्युक्त घटकों के साथ $\pi/4$ हो जाता है तो प्रत्यावर्ती धारा की आवृति $\frac{50}{\sqrt{3}}$ H_Z होती है।
 - (C) प्रत्यावती धारा की आवृति, जिस पर प्रतिघात शक्ति, वास्तविक शक्ति हास की आधी है, का मान $\frac{25}{\sqrt{3}}$ Hz है।
 - (D) जब धारा तथा वि.वा.बल के बीच का कलान्तर उपर्युक्त घटकों के साथ $\pi/4$ हो जाता है तो प्रत्यावर्ती धारा की आवृति $\frac{25}{\sqrt{3}}$ Hz होती है।

44. The two plates of a capacitor of capacitance C are given charges Q₁ and Q₂. This capacitor is connected across a resistance R as shown key is closed at t = 0. Find the charges on the plates after time t.

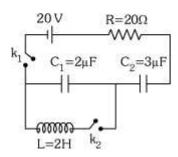
धारिता C वाले संधारित्र की दोनों प्लेटों को Q_1 और Q_2 आवेश दिया जाता है। संधारित्र को प्रतिरोधक R के साथ परिपथ के अनुसार जोड़ा जाता है। t=0 पर कुंजी K को बंद किया जाता है। t समय के पश्चात्



- (A) Total charge of the right plate $q_2=\frac{Q_1+Q_2}{2}-\left(\frac{Q_1-Q_2}{2}\right)e^{-\frac{t}{RC}}$ दांगी प्लेट पर कुल आवेश $q_2=\frac{Q_1+Q_2}{2}-\left(\frac{Q_1-Q_2}{2}\right)e^{-\frac{t}{RC}}$
- (B) Total charge on the left plate $q=\frac{Q_1+Q_2}{2}+\left(\frac{Q_1-Q_2}{2}\right)e^{-\frac{t}{RC}}$ बांगी प्लेट पर कुल आवेश $q_1=\frac{Q_1+Q_2}{2}+\left(\frac{Q_1-Q_2}{2}\right)e^{-\frac{t}{RC}}$
- (C) Initial potential difference across the plates is given by $\frac{Q_1-Q_2}{2C}$ which is the plates in given by $\frac{Q_1-Q_2}{2C}$ which is the plates in given by $\frac{Q_1-Q_2}{2C}$ ह्यारा दिया जाता है।
- (D) Initial potential difference across the plates is given by $\frac{Q_1+Q_2}{2C}$ एलेटों के मध्य प्रारम्भिक विभवान्तर $\frac{Q_1+Q_2}{2C}$ द्वारा दिया जाता है।

45. A body of mass 150 gm is dropped from point A, takes time t₁ seconds to reach the point B at the ground. Once more, the same body is dropped from point A and when body traverses half the distance, a bullet of mass 50 gm moving horizontally with speed 40 m/s hits the falling body at point C and sticks to it. The total time of flight of the body in this case is t₂ seconds and body strikes the ground at point D. The air drag should be neglected:

 $(Take g = 10 \text{ m/s}^2).$

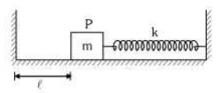

बिन्दु A से 150 gm द्रव्यमान की वस्तु गिरायी जाती है। इसे जमीन पर बिन्दु B पर पहुँचने में t_1 सेकण्ड लगते हैं। इसे फिर से बिन्दु A से गिराया जाता है तथा जब यह आधी दूरी तय करती है, एक 50 gm द्रव्यमान की गोली, जो क्षैतिज में 40 m/s चाल से जा रही है, बिन्दु C पर इस गिरती हुई बस्तु से टकराकर चिपक जाती है। यदि अब वस्तु का कुल उड्डयन समय t_2 सैकण्ड हो जाता है और वस्तु धरातल पर बिन्दु D पर टकराती है। वायु कर्षण नगण्य है। $(g=10~{\rm m/s^2}$ लेने पर)

- (A) distance between B and D is 20 m
- (B) distance between B and D is 80 m
- (C) speed of the body just before striking at point D is 10√26 m/s
- (D) speed of the body just before striking at point D is 15√26 m/s
- (A) B से D के बीच की दूरी 20 m है
- (B) B से D के बीच की दूरी 80 m है
- (C) D बिन्दु पर टकराने से ठीक पहले वस्तु की चाल 10√26 m/s होगी।
- (D) D बिन्दु पर टकराने से ठीक पहले वस्तु की चाल $15\sqrt{26}\,\mathrm{m/s}$ होगी।

Ans. (A, C)

46. A circuit shown in the figure in which k₁ is closed and k₂ is open. Inductor L can be connected in series to capacitor C₁ by dosing switch k₂ and opening k₁. दिये परिपथ में क्ंज़ी k₁ बंद है और k₂ खुली है। प्रेरक कुण्डली L को संधारित्र C₁ से श्रेणीक्रम में क्ंज़ी k₂ को बंद करके और k₁ को खोलकर जोड़ा जा सकता है।

- (A) The switch \mathbf{k}_1 is closed and \mathbf{k}_2 is opened for long time. The charge on capacitor C_2 will be 24 μC
- (B) At t=0, when capacitors are fully charged, switch k_1 is opened and switch k_2 is closed, so that inductor is connected in series with capacitor C_1 . The maximum

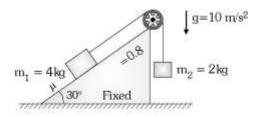

charge will appear on capacitor C_1 at time t is $\frac{\pi}{500}$ sec.

- (C) At t = 0, when capacitors are fully charged, switch k₁ is opened and switch k₂ is closed, so that inductor is connected in series with capacitor C₁. The maximum charge will appear on capacitor C₁ at time t is π/1000 sec.
- (D) The maximum energy in inductor approximately will be 0.144 mJ
- (A) k₁ को बंद और k₂ को लम्बे समय तक खोलने पर संधारित्र C₂ पर आवेश 24 μC होगा।
- (B) t=0 पर जब संधारित्र पूर्णतः आवेशित है, कुंजी k_1 को खोला तथा k_2 को बंद रखा जाता है तािक प्रेरकत्व, संधारित्र C_1 के साथ श्रेणीक्रम में जुड़ जाये। संधारित्र C_1 पर अधिकतम आवेश $t=\frac{\pi}{500}$ sec. पर होगा।
- (C) t=0 पर जब संधारित्र पूर्णतः आवेशित है, कुंजी ${\bf k}_1$ को खोला तथा ${\bf k}_2$ को बंद रखा जाता है तािक प्रेरकत्व, संधारित्र ${\bf C}_1$ के साथ श्रेणीक्रम में जुड़ जाये। संधारित्र ${\bf C}_1$ पर अधिकतम आवेश ${\bf t}=$

(D) प्रेरकत्व में अधिकतम ऊर्जा लगभग 0.144 m J होगी।

Figure shows a block P of mass m resting on a smooth horizontal floor. The block is at a distance ℓ from a rigid wall on left side. Block is pushed toward right through $\frac{3\ell}{2}$ and released. When this block is passing through its mean position, a second block of mass m_1 is gently placed on it and stick to it. The combined system of two blocks move and finally just reaches the wall. Then

चित्रानुसार एक P ब्लॉक जिसका द्रव्यमान m है, चिकने क्षैतिज फर्श पर रखा है। ब्लॉक एक दृढ़ दीवार से बांबी ओर ℓ दूरी पर है। ब्लॉक को दावीं ओर $3\ell/2$ दूरी तक धकेल कर छोड़ा जाता है। जब ब्लॉक अपनी माध्य स्थिति से गुजरता है तो एक m_1 द्रव्यमान का दूसरा ब्लॉक इस पर धीरे से रखा जाता है तथा इस पर चिपक जाता है। यदि दोनों ब्लॉक साथ में चलते हैं और बस दीवार तक पहुँचते हैं, तो–

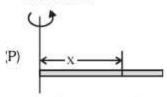

(A) $m_1 = \frac{5m}{8}$

47.

- (B) $m_1 = \frac{5m}{4}$
- (C) Velocity of block m at mean position is $\frac{3\ell}{2}\sqrt{\frac{K}{m}}$ (before attaching block m $_1$) माध्य स्थिति पर ब्लॉक m का वेग $\frac{3\ell}{2}\sqrt{\frac{K}{m}}$ है। (m $_1$ के चिपकने से पहले)
- (D) Velocity of block m at mean position is $\frac{3\ell}{4}\sqrt{\frac{K}{m}}$ (before attaching block m $_1$) माध्य स्थिति पर ब्लॉक m का वेग $\frac{3\ell}{4}\sqrt{\frac{K}{m}}$ है। (m $_1$ के चिपकने से पहले)

Ans. (B, C)

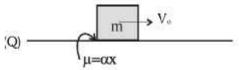
48. Two blocks of masses m_1 and m_2 are connected through a massless inextensible string. Block of mass m_1 is placed at the fixed rigid inclined plane while the block of mass m_2 hanging at the other end of the string which is passing through a fixed massless frictionless pulley shown in figure. The coefficient of static friction between the block and the inclined plane is 0.8. The system of masses m_1 and m_2 is released from rest. दो ब्लॉक जिनके द्रव्यमान m_1 और m_2 हैं, एक द्रव्यमान रहित अवितान्य रस्सी से जुड़ें हैं। m_1 द्रव्यमान का ब्लॉक स्थिर दूढ़ नततल पर रखा है जबिक ब्लॉक m_2 रस्सी के दूसरे सिरे से लटका है जो कि एक चित्रानुसार एक दृढ़ द्रव्यमान रहित घर्षण रहित घरनी से ऊपर से गुजरती है। ब्लॉक तथा नत तल के बीच स्थैतिक घर्षण गुणंक 0.8 है। m_1 तथा m_2 द्रव्यमान से बने निकाय को स्थिरावस्था से मुक्त किया जाता है।


- (A) the tension in the string is 20 N after releasing the system निकाय को मुक्त करने के बाद रस्सी में तनाव 20 N होगा।
- (B) the contact force by the inclined surface on the block is along normal to the inclined surface नत तल के द्वारा ब्लॉक पर सम्पर्क बल, नत तल पर अभिलम्ब के अनुदिश है।
- (C) the magnitude of contact force by the inclined surface on the block m_1 is $20\sqrt{3}$ N ख्लॉक m_1 पर नत तल के द्वारा लगाये गये सम्पर्क बल का परिमाण $20\sqrt{3}$ N है।
- (D) None of these (इनमें से कोई नहीं)

49. Match the following Questions. (कॉलम सुमेलन कीजिये।)

Column-I

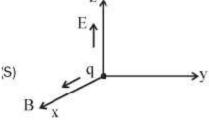
Column-II


(A) Parabola (परवलवाकार)

A rod is rotating with constant angular velocity about an axis as shown. Graph of tension in rod as a function of position x is a

एक छड़ नियत कोणीय वेग से किसी अक्ष के सापेक्ष चित्रानुसार घूर्णन कर रही है। स्थिति x के फलन के रूप में छड़ में तनाव का आरेख होगा।

(B) an ellipse (दीर्घवृत्ताकार)

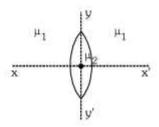

Block is moving on the rough surface with initial speed v₀ then, graph of velocity of block as a function of position is

एक ब्लॉक खुरदरी सतह पर प्रारम्भिक चाल v_0 से गतिशील है। स्थिति के फलन के रूप में ब्लॉक के वेग का आरेख होगा।

(C) a hyperbola (अतिपरवलयाकार)

(R) Graph of adiabatic compressibility as a function of pressure for ideal gas is a (आदर्श गैस के लिए दाब के फलन के रूप में रूद्धीष्म सम्पी ड्यता का आरेख होगा।)

(D) cycloid (चक्रज)



A charge 'q' is at rest at origin. Electric field is switched along z-axis and magnetic field is switched along x-axis. Path of the charge particle is एक आवेश 'q' मूल बिन्दु पर विरामावस्था में है। z-अक्ष के अनुदिश विद्युत क्षेत्र तथा x-अक्ष के अनुदिश चुम्बकीय क्षेत्र चालू किया जाता है। आवेशित कण का पथ होगा।

Ans. $[(A) \rightarrow (P); (B) \rightarrow (Q); (C) \rightarrow (R); (D) \rightarrow (S)]$

50. A equi convex lens of refractive index μ₂ and focal length f (in air) is kept in medium of refractive index μ₁. Match Column I with Column II and select the correct answer using the codes given below the Columns.

एक μ_2 अपवर्तनांक तथा f फोकस दूरी (हवा में) का समोत्तल लैंस μ_1 अपवर्तनांक के माध्यम में रखा जाता है। स्तम्भ-f का स्तम्भ-f से मिलान करो तथा स्तम्भ में दिये गये संकेतों का प्रयोग करते हुए सही उत्तर को चुनों।

Column-I

- (A) If lens is cut in two equal parts by a plane yy' $(\mu_1=1)$ यदि लेंस को एक तल yy' के द्वारा दो बराबर भागों में काटा जाये $(\mu_1=1)$ ।
- (B) If lens is cut in two equal parts by a plane xx' (μ₁ = 1) यदि लेंस को एक तल xx' के द्वारा दो बराबर भागों में काटा जाये (μ₁ = 1)।
- (C) If $\mu_1 = \mu_2$.
- (D) If $\mu_1 > \mu_2$.

Column-II

- (P) Incident ray will not deviate आपतित किरण विचलित नहीं होगी
- (Q) Each half will be converging lens and focal length will change प्रत्येक भाग अभिसारी लेंस होगा और उसकी फोकस दूरी बदल जायेगी।
- (R) Each half will be converging and focal length will remain same प्रत्येक भाग अभिसारी लींस होगा और उसकी फोकस दूरी वही रहेगी।
- (S) Lens will be diverging and focal length will change लैंस अपसारी होगा पर उसकी फोकस दूरी बदल जाऐगी।

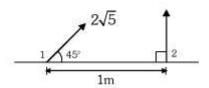
Ans.
$$[(A) \rightarrow (Q); (B) \rightarrow (R); (C) \rightarrow (P); (D) \rightarrow (S)]$$

51. An electron in a hydrogen atom makes a transition n₁ → n₂, where n₁ and n₂ are the principal quantum numbers of the two states. Assume Bohr model to be valid हाइड्रोजन परमाणु में एक इलेक्ट्रॉन n₁ → n₂ में संक्रमण करता है, जहाँ n₁ और n₂ दो अवस्थाओं की मुख्य क्वांटम संख्या है। यदि बोर मॉडल सत्य है, तो-

Column-II Column-II

- (A) The electron emits an energy of 2.55 eV इलेक्ट्रॉन 2.55 eV ऊर्जा उत्सर्जित करेगा।
- (B) Time period of the electron in the initial state is eight time that in the final state इलेक्ट्रॉन का प्रारम्भिक अवस्था में आवर्तकाल अंतिम अवस्था के आवर्तकाल का 8 गुना है।
- (C) Speed of electron become two times इलेक्ट्रॉन की चाल दुगुनी हो जाती है।
- (D) Radius of orbit of electron becomes 4.77 Å इलेक्ट्रॉन की कक्षा की त्रिज्या 4.77 Å हो जाती है।
- (R) $n_1 = 5, n_2 = 3$

(P) $n_1 = 2$, $n_2 = 1$


(Q) $n_1 = 4$, $n_2 = 2$

- (S) $n_1 = 6, n_2 = 3$
- (T) $n_1 = 3$, $n_2 = 4$

Ans. $[(A) \rightarrow (Q); (B) \rightarrow (P, Q, S); (C) \rightarrow (P, Q, S); (D) \rightarrow (R, S)]$

52. A particle of mass 1 kg is projected with an initial velocity of 2√5 m/sec at an angle of 45° with the horizontal. At the same instant another particle of same mass is projected vertically upwards from a distance 1m from the point of projection of first particle as shown in the figure. If particle 1 follows as straight line path after collision with particle 2 then match the following (g = 10 m/s²)

एक $1 \rm kg$ द्रव्यमान के कण को क्षैतिज के साथ 45° के कोण पर $2\sqrt{5}$ m/sec के प्रारम्भिक वेग से प्रक्षेपित किया जाता है। इसी क्षण समान द्रव्यमान का दूसरा कण चित्रानुसार पहले कण से $1 \rm m$ की दूरी से उर्ध्वांधर ऊपर की तरफ प्रक्षेपित किया जाता है। यदि कण 2 से टक्कर के पश्चात् कण 1 सीधी रेखा में जाता है तो निम्न का मिलान करो- ($g=10 \rm \ m/s^2$)

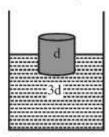
Column-I

- (A) Horizontal displacement of particle 1 during motion गति के दौरान कण 1 का क्षैतिज विस्थापन
- (B) Horizontal displacement of particle 2 during motion गति के दौरान कण 2 का क्षैतिज विस्थापन
- (C) Initial velocity of particle 2 कण 2 का प्रारम्भिक वेग
- (D) Coefficient of restitution for the collision टक्कर का प्रत्यावस्थान गुणांक

Column-II

- (P) 1 S.I. unit
- (Q) $\sqrt{10}$ S.I. unit
- (R) 2 S.I. unit
- (S) 2√5 S.I. unit
- (T) 0.5 S.I. unit

Ans. $[(A) \rightarrow (P); (B) \rightarrow (P); (C) \rightarrow (Q); (D) \rightarrow (P)]$


53. A wire is stretched between two fixed points separated by a distance of 2m such that tension in it is equal to 30.25 kgwt. The wire vibrates in its first overtone. A closed organ pipe of length 5/3 m is brought near the wire. The temperature of the gas in the pipe is 27°C. When the organ pipe is made to vibrate in second overtone, five beats are heard every second. If the tension in the string is reduced slightly then the number of beats heard per second is reduced to three. Find the linear (mass) density of the wire in gram/metre. Given C_p/C_v of gas in the organ pipe = 1.44 and its mean molar mass is 27.7 gm.

एक तार $2\,\mathrm{m}$ दूरी पर स्थित दो दृढ़ बिन्दुओं के बीच इस तरह खींचा जाता है कि इसमें तनाव $30.25\,\mathrm{kgwt}$ के बराबर है। तार अपने प्रथम अधिस्वरक में कम्पित होता है। $5/3\,\mathrm{m}$ लम्बाई का एक बंद आर्गन पाइप तार के नजदीक लाया जाता है। पाइप में गैस का तापमान $27^{\circ}\mathrm{C}$ है। जब आर्गन पाईप को द्वितीय अधिस्वरक में कम्पित कराया जाता है तो प्रत्येक सेकण्ड पाँच विस्पंद सुन जाते है। यदि तार में तनाव कुछ कम किया जाता है तो प्रति सेकण्ड सुनाई देने वाले विस्पन्दों की संख्या $3\,\mathrm{e}$ हो जाती है। तार का रेखीय (द्रव्यमान) घनत्व ग्राम/मीटर में ज्ञात करो। दिया है आर्गन पाईप की गैस का $C_\mathrm{p}/C_\mathrm{v}=1.44\,\mathrm{e}$ तथा इसका माध्य मोलर द्रव्यमान $27.7\,\mathrm{gm}$ है।

Ans. (1)

54. A cylindrical block of height 1 m is in equilibrium in a beaker as shown. Cross-sectional area of cylindrical block is one fourth of cross-sectional area of beaker. Density of cylindrical block is one third of liquid. Determine the time period of small oscillation (in seconds). (Given: g = π² m/s²)

किसी बीकर में 1 m ऊँचाई वाला एक बेलनाकार ब्लॉक चित्रानुसार साम्यावस्था में है। बेलनाकार ब्लॉक का अनुप्रस्थकाट क्षेत्रफल बीकर के अनुप्रस्थकाट क्षेत्रफल का एक चौथाई है। बेलनाकार ब्लॉक का चनत्व द्रव की कुलना में एक तिहाई है। अल्प दोलन का आवर्तकाल सेकण्ड में ज्ञात की जिये। (g = π² m/s²)

Ans. (1)

55. An equi-convex lens of focal length $10~{\rm cm}$ in air and refractive index ($\mu_{\rm g}=1.5$) is placed in a liquid whose refractive index varies with time as $\mu(t)=1.0+\frac{1}{10}t$. If the lens was placed in the liquid at t=0 lens will act as concave lens of focal length $20~{\rm cm}$ at t=5n. Find n. हवा में $10~{\rm cm}$ फोकस दूरी तथा अपवर्तनांक ($\mu_{\rm g}=1.5$) का समोत्तल लैंस एक द्रव में रखा जाता है, जिसका अपवर्तनांक समय के साथ $\mu(t)=1.0+\frac{1}{10}t$ की तरह परिवर्तित होता है। यदि लैंस द्रव में $t=0~{\rm tx}$ रखा जाये तो $t=5n~{\rm tx}$ लेंस $20~{\rm cm}$ फोकस दूरी के अवतल लैंस की तरह व्यवहार करेगा।

Ans. (2)

n ज्ञात करो।

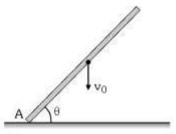
A gas containing hydrogen like ions with atomic no Z, emits photons in transition n + 2 → n, where n = Z. These photons fall on a metallic plate and eject electrons having minimum de-Broglie wavelength λ of 5Å. Find the value of 'Z' if the work function of metal is 4.2 eV.
हाइड्रोजन सदृश्य आयनों से बनी एक Z परमाणु क्रमांक की गैस संक्रमण n + 2 → n में फोटोन उत्सर्जित

हाइड्रोजन सद्श्य आयनों से बनी एक Z परमाणु क्रमांक की गैस सक्रमण n + 2 → n में फोटोन उत्सर्जित करती है जहाँ n = Z है। ये फोटोन एक धात्विक प्लोट पर गिरते हैं तथा 5Å न्यूनतम डी ब्रोग्ली तरंग λ के इलेक्ट्रॉन उत्सर्जित करते है। Z का मान ज्ञात करो यदि धातु का कार्य फलन 4.2 eV है।

Ans. (2)

57. In a Young's double slit experiment the light source is at distance $\ell_1=20~\mu m$ and $\ell_2=40~\mu m$ from the slits. The light of wavelength $\lambda=500~nm$ incident on slits separated at a distance $d=10~\mu m$. A screen is placed at a distance D=2m away from the slits as shown in the figure. If 10k maxima appear on the screen, then find the value of k. Round off your answer to the nearest integer, if required.

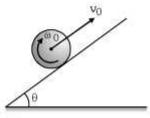
यंग के द्वि–स्लिट प्रयोग में प्रकाश स्त्रोत स्लिटों से $\ell_1=20~\mu m$ तथा $\ell_2=40~\mu m$ की दूरी पर है। $\lambda=500~nm$ तरंगदैर्घ्य का प्रकाश $d=10~\mu m$ दूरी पर स्थित स्लिटों पर गिरता है। एक पर्दा चित्रानुसार स्लिटों से D=2m की दूरी पर रखा है। यदि पर्दे पर 10~k उच्चिष्ट दिखाई देता है तो k का मान ज्ञात करो। यदि आवश्यक हो तो अपना उत्तर नजदीकी पूर्णांक में दो।


Ans. (4)

58. A rod of length ℓ forming an angle θ with the horizontal strikes a frictionless floor at A with its centre of mass velocity v₀ and no angular velocity. Assuming that the impact at A is perfectly elastic, the angular velocity of the rod immediately after the impact is

found to be
$$\omega = \frac{k v_0 \cos \theta}{l(1 + 3\cos^2 \theta)}$$
. Find value of k/2.

एक ℓ लम्बाई की छड़ क्षैतिज के साथ θ कोण बनाती हुई द्रव्यमान केन्द्र के वेग v₀ तथा शून्य कोणीय वेग के साथ एक घर्षण रहित धरातल पर विन्दु A पर टकराती है। यह मानते हैं कि A पर टक्कर पूर्णतया


प्रत्यास्थ है, टक्कर के तुरन्त बाद छड़ का कोणीय वेग $\omega = \frac{k \, v_0 \cos \theta}{l(1+3\cos^2 \theta)}$ पाया जाता है। k/2 का मान ज्ञात कीजिये।

Ans. (6

59. A sphere of radius r is projected up an inclined plane for which $\mu = \left(\frac{1}{7}\right)\tan\theta$ with a velocity v_0 and initial angular velocity $\omega_0(v_0>r\omega_0)$. The total time of rise is found to be $\frac{k\,v_0+4\,\omega_0 r}{18g\sin\theta}$. Find k.

एक r त्रिण्या के गोले को एक नत तल पर ऊपर की ओर वेग v_0 तथा प्रारम्भिक कोणीय वेग $\omega_0(v_0>r\omega_0)$ से फेंका जाता है, जिसके लिए $\mu=\left(\frac{1}{7}\right)\tan\theta$ है। ऊपर चढ़ने में लगा कुल समय $\frac{kv_0+4\omega_0r}{18g\sin\theta}$ पाया जाता है। k ज्ञात करो।

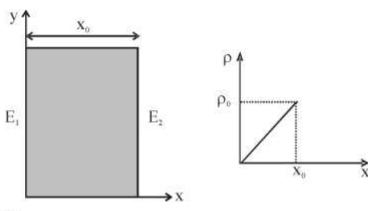

Ans. (7

Figure shows a very thin layer of charge having thickness x₀. The variation of volume charge density 'p' within the layer as a function of x is shown in the graph. The electric field on the left side of layer is E₁ and on the right side of layer is E₂. The total charge per unit area of the layer is σ. The force per unit area acting on the layer of charge is F₀.

The value of
$$\sigma \left(\frac{E_1 + E_2}{F_0} \right)$$
 is

चित्र में पतली आवेश की परत जिसकी मोटाई x_0 है, दर्शायी गई है। परत के अंदर x के फलन के रूप में आयतन आवेश घनत्व ρ का वितरण ग्राफ में दर्शाया गया है। परत के बाँयी ओर विद्युत क्षेत्र E_1 है। परत के दांयी ओर विद्युत क्षेत्र E_2 है। परत के प्रति एकांक क्षेत्रफल पर कुल आवेश σ है। आवेश की परत पर प्रति

इकाई क्षेत्रफल पर लगने वाला कुल बल F_0 हो तो $\,\sigma\!\!\left(\!rac{E_1+E_2}{F_0}\!
ight)$ का मान ज्ञात कीजिये।

Ans. (2)