PAPER-2

PART-1: PHYSICS

ANSWERKEY

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	A,B,C	A,B,C,D	A,B,C,D	A,B,C	A,C	A,B,C	A,B,C,D	A,C	A,B,C,D	A,B,D
SECTION-II	Q. 1	A	B	C	D	Q. 2	A	B	C	D	
		Q,T	Q,R	P,S	P		P,R,S,T	$\mathbf{P , R , S , T}$	Q,R,T	Q,T	
SECTION-IV	Q.	1	2	3	4	5	6	7	8		
	A.	6	5	4	3	7	1	5	4		
SOLUT10N											

SECTION-I

1. Ans. (A,B,C)

Sol. Path difference
$\Delta x=S_{2} P-S_{1} P=\sqrt{x^{2}+d^{2}}-x$

(A) when $\mathrm{x} \approx \infty$
$\Delta \mathrm{x}=0$, so phase difference is zero
(B) In some phase so constructive
(C) when path difference $\Delta \mathrm{x}=\mathrm{n} \lambda$, then constructive interference
when $\Delta \mathrm{x}=(2 \mathrm{n}+1) \lambda / 2$ where $\mathrm{n}=0,1,2, \ldots$ destructive
2. Ans. (A,B,C,D)

Sol. We know that $\mathrm{I}=\frac{2 \pi^{2} \mathrm{~B}}{\mathrm{v}} \mathrm{s}_{0}^{2} v^{2}$ and $\mathrm{P}=\mathrm{I} \times$ area also $I=\frac{p_{0}^{2}}{2 \rho v}$ and here $s_{0}=\Delta R, v=\sqrt{\frac{B}{\rho}}$ and $v=\mathrm{f}$
3. Ans. (A,B,C,D)

Sol. Block B \& C will perform SHM about COM

$$
\therefore \omega=\sqrt{\frac{\mathrm{k}}{\mu}}=\sqrt{\frac{\mathrm{k}}{\mathrm{~m} / 2}}=\sqrt{\frac{2 \mathrm{k}}{\mathrm{~m}}}
$$

For collision between $\mathrm{M} \& \mathrm{~m}$

$$
\mathrm{Mv}_{0}=\mathrm{Mv}_{1}+\mathrm{mv}_{2} \&
$$

$$
\begin{array}{ll}
& \mathrm{v}_{2}-\mathrm{v}_{1}=\mathrm{v}_{0} \\
\therefore \quad & \mathrm{v}_{0}=\mathrm{v}_{1}+\gamma \mathrm{v}_{2} \\
& \mathrm{v}_{0}=\mathrm{v}_{2}-\mathrm{v}_{1} \\
& 2 \mathrm{v}_{0}=\mathrm{v}_{2}(1+\gamma)
\end{array}
$$

$$
\therefore \quad \mathrm{v}_{2}=\frac{2 \mathrm{v}_{0}}{1+\gamma}
$$

$$
\therefore \quad \mathrm{v}_{\mathrm{CM}}=\frac{\mathrm{mv}_{2}+\mathrm{m} \times 0}{\mathrm{~m}+\mathrm{m}}=\frac{\mathrm{v}_{0}}{1+\gamma}
$$

$$
\beta=\frac{v_{\max / C O M}}{\omega}=\frac{v_{0}}{\omega(1+\gamma)}
$$

$$
\mathrm{v}_{\max }=\frac{2 \mathrm{v}_{0}}{1+\gamma}
$$

4. Ans. (A, B, C)

Sol. Since the process in chamber 2 is adiabatic

$$
\left.\begin{array}{l}
\therefore \mathrm{P}_{0} \mathrm{~V}_{0}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma} \\
\therefore
\end{array} \mathrm{P}_{0} \mathrm{~V}_{0}^{5 / 3}=\frac{27}{8} \mathrm{P}_{0} \mathrm{~V}_{2}^{5 / 3}{ }^{27}\right)^{3 / 5} \mathrm{~V}_{0}
$$

\therefore Volume of chamber

$$
\begin{aligned}
& 1=2 \mathrm{~V}_{0}-\mathrm{V}_{2}=\left[2-\left(\frac{8}{27}\right)^{3 / 5}\right] \mathrm{V}_{0} \\
& \mathrm{P}_{0}^{1-\gamma} \mathrm{T}_{0}^{\gamma}=\mathrm{C} \\
\therefore & \mathrm{~T}_{2}=\left(\frac{27}{8}\right)^{2 / 5} \mathrm{~T}_{0}
\end{aligned}
$$

$$
\text { Work by the gas }=\frac{\mathrm{P}_{0} \mathrm{~V}_{0}-\mathrm{P}_{2} \mathrm{~V}_{2}}{\gamma-1}
$$

5. Ans. (A,C)

Sol.

$\mathrm{V}_{3}{ }^{2}=\mathrm{V}_{1}{ }^{2}-2 \mathrm{~g} \sin \theta \mathrm{x}$ so $\mathrm{V}_{3}<\mathrm{V}_{1}$
$\mathrm{V}_{4}{ }^{2}=\mathrm{V}_{2}{ }^{2} 2 \mathrm{~g} \cos \theta(\Delta \mathrm{y})=\mathrm{V}_{2}{ }^{2}-2 \mathrm{~g} \cos \theta(0)=\mathrm{V}_{2}{ }^{2}$
$V_{4}=V_{2}$
6. Ans. $(\mathbf{A}, \mathrm{B}, \mathrm{C})$

Sol. $\gamma=\frac{\mathrm{n}_{1} \mathrm{C}_{\mathrm{p}_{1}}+\mathrm{n}_{2} \mathrm{C}_{\mathrm{p}_{2}}}{\mathrm{n}_{1} \mathrm{C}_{\mathrm{v}_{1}}+\mathrm{n}_{2} \mathrm{C}_{\mathrm{v}_{2}}}=\frac{\frac{\mathrm{n}_{1} \gamma_{1}}{\gamma_{1}-1}+\frac{\mathrm{n}_{2} \gamma_{2}}{\gamma_{2}-1}}{\frac{\mathrm{n}_{1}}{\gamma_{1}-1}+\frac{\mathrm{n}_{2}}{\gamma_{2}-1}}$

$$
\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right) \mathrm{C}_{\mathrm{v}}=\mathrm{n}_{1} \mathrm{C}_{\mathrm{v}_{1}}+\mathrm{n}_{2} \mathrm{C}_{\mathrm{v}_{2}}
$$

$$
\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right) \frac{\mathrm{R}}{\gamma-1}=\frac{\mathrm{n}_{1} \mathrm{R}}{\gamma_{1}-1}+\frac{\mathrm{n}_{2} \mathrm{R}}{\gamma_{2}-1}
$$

7. Ans. (A,B,C,D)
8. Ans. (A,C)

Sol. $F=\frac{d V}{d x}$
$\frac{d V}{d x}=0$ at B, C, D
$\therefore \mathrm{F}=0$ at $\mathrm{B}, \mathrm{C}, \mathrm{D}$
so $\mathrm{a}=0$ at $\mathrm{B}, \mathrm{C}, \mathrm{D}$
speed is maximum at B as potential energy at B is maximum
9. Ans. (A,B,C,D)

Sol. For reflection from densor medium, the reflected wave experience a phase difference of $\pi \&$ for refection from rarer medium, there is no phase difference.
10. Ans. (A,B,D)

Sol. For same heat flow rate,
$\left.\frac{\mathrm{d} \theta}{\mathrm{dt}}\right|_{\mathrm{A}}=\left.\frac{\mathrm{d} \theta}{\mathrm{dt}}\right|_{\mathrm{B}}$
$\Rightarrow \frac{\mathrm{k}_{\mathrm{A}} \mathrm{A}_{\mathrm{A}}(100-0)}{\ell_{\mathrm{A}}}=\frac{\mathrm{k}_{\mathrm{B}} \mathrm{A}_{\mathrm{B}}(100-0)}{\ell_{\mathrm{B}}}$
In figure (ii), both rods are in series
$\therefore \quad \mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2}$

SECTION-II

1. Ans.(A)-(Q, T); (B)-(Q,R);(C)-(P,S); (D)-(P)

Sol. Rate of heat loss $=80 \times 10.8=54 \times 16 \mathrm{cal} / \mathrm{sec}$.
(A) $r=1.6$
\Rightarrow rate of heat supplies by forming steam to water at $0^{\circ}=1.6 \times 640>54 \times 16$
\therefore additional ice will melt
(B) Rate of heat loss
$=54 \times 16=64 \times 13.5 \mathrm{cal} / \mathrm{sec}$.
$\mathrm{r}=1.35$
$=$ rate of heat supplied for converting steam to water at $0^{\circ} \mathrm{C}=1.35 \times 640=13.5 \times 64$. no additional ice will melt or water will fuse.
(C) Rate of heat loss $=54 \times 16=72 \times 12 \mathrm{cal} / \mathrm{sec}$. Rate of heat supplied by converting steam to ice at $0^{\circ} \mathrm{C}=1.20 \times 720=12 \times 72 \mathrm{cal} / \mathrm{sec}$ no additional ice will melt or water will fuse.
(D) Additional water will fuse to ice.
2. Ans. (A)-(P,R,S,T); (B)-(P,R,S,T);
(C)-(Q,R,T); (D)-(Q,T)

Sol. From phase diagram, in case 'C' \& 'D' particle are able to reach at heightest point, while in 'a' \& 'b' they don't.

SECTION-IV

1. Ans. 6

Sol. $\mathrm{t}_{\text {max }}=\mu \mathrm{N}=0.4 \times 20 \mathrm{~g}=80$

$\mathrm{F}=40 \mathrm{t}$
Sliding starts when
$\mathrm{F}=\mathrm{f}_{\text {max }}$
$80 t=80$
$\therefore \mathrm{t}=1 \mathrm{~s}$
$\int 2 \mathrm{Fdt}-\int \mathrm{f}_{\mathrm{k}} \mathrm{dt}=\mathrm{mv} 0$
$\Rightarrow \int_{1}^{3} 80 \mathrm{tdt}-80 \int_{1}^{3} \mathrm{dt}=20 \mathrm{~V}$
$\therefore \mathrm{v}=8 \mathrm{~m} / \mathrm{s}$
$\mathrm{P}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{v}}=40 \mathrm{t} \times 2 \mathrm{v}=40 \times 3 \times 16=1920$
2. Ans. 5

Sol. Since 'B' completes the circle $\Rightarrow \mathrm{V}_{\mathrm{B}}$ at lowest point $=\sqrt{5 \mathrm{gR}}$

From work energy theorem for rod,
$\operatorname{Mg} \frac{\ell}{2}=\frac{1}{2} \times \frac{\mathrm{M} \ell^{2}}{3} \omega^{2}$
$\Rightarrow \omega=\sqrt{\frac{3 \mathrm{~g}}{\ell}}$
For angular momentum conservation before \& after collision,
$\frac{\mathrm{M} \ell^{2}}{3} . \omega=\mathrm{mv}_{\mathrm{B}} \ell$
$\Rightarrow\left(\frac{\mathrm{M}}{\mathrm{m}}\right)=\frac{3 \mathrm{v}_{\mathrm{B}}}{\ell \omega}=\frac{3}{\ell} \frac{\sqrt{5 \mathrm{gR}}}{\sqrt{\frac{3 \mathrm{~g}}{\ell}}}=\mathrm{N}$
$\therefore \quad \mathrm{N}^{2}=\frac{9 \times 5 \mathrm{gR}}{\ell^{2} \cdot \frac{3 \mathrm{~g}}{\ell}} \quad$ since $\ell=\mathrm{R}$ (given)
$\therefore \quad \mathrm{N}^{2}=15$
$\therefore \quad \frac{\mathrm{N}^{2}}{3}=5$
3. Ans. 4

Sol. From Bernoulli's equation,

$$
P_{0}+\rho g\left(h_{1}-h_{2}\right)=\frac{1}{2} \rho v^{2}+P_{0}
$$

[Since cross section Area of beaker \gg cross section area of faucet)
$\therefore \quad \mathrm{v}=\sqrt{2 \mathrm{~g}\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)}=\sqrt{2 \times 10 \times \frac{8}{100}}=\frac{4}{\sqrt{10}}$
4. Ans. 3

Sol. For floating $\mathrm{mg}=$ Buoyant force

Since mass doesnot change with temperature

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{B}_{1}}=\mathrm{F}_{\mathrm{B}_{2}} \Rightarrow \rho_{\mathrm{w}_{1}} \mathrm{~V}_{1} \mathrm{~g}=\rho_{\mathrm{w}_{2}} \mathrm{~V}_{2} \mathrm{~g} \\
& \rho_{\mathrm{w}_{1}}\left(0.99 \mathrm{~V}_{0}\right)=\left(\frac{\rho_{\mathrm{w}_{1}}}{1+\gamma_{\mathrm{w}} \Delta \mathrm{~T}}\right)\left(\mathrm{V}_{0}(1+3 \alpha \Delta \mathrm{~T})\right) \\
& \Rightarrow\left(1-\frac{1}{100}\right)=\left(\frac{1+3 \alpha \Delta \mathrm{~T}}{1+\gamma_{\mathrm{w}} \Delta \mathrm{~T}}\right)
\end{aligned}
$$

By Binomial approx.

$$
\begin{aligned}
& 1-\frac{1}{100}=\left(1+\left(3 \alpha-\gamma_{\mathrm{w}}\right) \Delta \mathrm{T}\right) \\
& \frac{1}{100}=\left(\gamma_{\mathrm{w}}-3 \alpha\right) \Delta \mathrm{T} \\
\Rightarrow & \Delta \mathrm{~T}=\frac{1}{100\left(\gamma_{\mathrm{w}}-3 \alpha\right)}=40^{\circ} \mathrm{C} \\
\Rightarrow & \mathrm{~T}_{\mathrm{f}}=60^{\circ} \mathrm{C}
\end{aligned}
$$

5. Ans. 7

Sol. We have $T_{1}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$
or
$\mathrm{T}_{1}^{2}=4 \pi^{2} \frac{\mathrm{~m}}{\mathrm{k}}$
After more weights $\Delta \mathrm{m}$ are added, we have

$$
\begin{equation*}
\mathrm{T}_{2}=2 \pi \sqrt{\frac{\mathrm{~m}+\Delta \mathrm{m}}{\mathrm{k}}}, \text { or } \mathrm{T}_{2}^{2}=4 \pi^{2} \frac{\mathrm{~m}+\Delta \mathrm{m}}{\mathrm{k}} . . \tag{2}
\end{equation*}
$$

By subtracting Eq. (1) from Eq. (2), we get $\mathrm{T}_{2}^{2}-\mathrm{T}_{1}^{2}=4 \pi^{2} \frac{\Delta \ell}{\mathrm{~g}}$, or $\Delta \ell=\frac{\mathrm{g}}{4 \pi^{2}}\left(\mathrm{~T}_{2}^{2}-\mathrm{T}_{1}^{2}\right)$.
Upon inserting the numerical data we obtain $\Delta \ell=$ 1.75 cm .

6. Ans. 1

Sol. For the semicircular plate of radius ℓ, the centre of mass lies at a distance of $\frac{4 \ell}{3 \pi}$ from the centre.

Taking σ to be the mass per unit area, the position of centre of mass of the remaining piece of the square would be at a distance of $\frac{\ell(3 \pi-4)}{3(8-\pi)}$ from the centre of the original square plate. Now, taking the centre of the original square to the origin, the centre of mass of the new structure can be determined. This turns out to be at a distance of $\frac{\ell}{3}$ to the right of the origin.
7. Ans. 5

Sol. $\underset{52 \mathrm{~cm}}{\stackrel{\text { S }}{\rightleftarrows} \stackrel{M}{\leftrightarrows 50 \mathrm{~cm}}}$

$$
\mathrm{v}=325 \mathrm{~m} / \mathrm{s}
$$

$v_{0}=\frac{\mathrm{V}}{4 \mathrm{~L}} \therefore v_{10}=\frac{325}{4 \times 0.52}$
$v_{20}=\frac{325}{4 \times 0.50}$
$v_{10}-v_{20}=\frac{325}{4}\left(1-\frac{1}{0.264}\right)$
$=\frac{325}{4}\left(\frac{0.004}{0.260 \times 0.264}\right)$
$=\frac{0.325}{0.260 \times 0.264}=6.25 \mathrm{~Hz}$
8. Ans. 4

Sol. $\mathrm{T}_{1}=8 \times 10^{8} \times 10^{-6}=800 \mathrm{~N}$
$\mathrm{T}_{2}=3 \times 10^{8} \times 2 \times 10^{-6}=600 \mathrm{~N}$
$800 \times \frac{3}{5}=600 \times \cos \theta$
$\Rightarrow \cos \theta=4 / 5 \Rightarrow \theta=37^{\circ}$

$\Rightarrow 800 \sin 53^{\circ}+600 \sin 37^{\circ}=\mathrm{F}$
$\Rightarrow 800 \times \frac{4}{5}+600 \times \frac{3}{5}=\mathrm{F}$
$\Rightarrow \mathrm{F}=1000 \mathrm{~N}$

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	B	B	B,C	B,D	D	B,D	D	D	A,C,D	A,D
SECTION-II	Q. 1	A	B	C	D	Q. 2	A	B	C	D	
		Q,S	P,R,T	Q,R,T	Q,S		Q,S	Q,S,T	R,S	P,S,T	
SECTION-IV	Q.	1	2	3	4	5	6	7	8		
	A.	1	3	4	1	6	1	4	7		

SOLUTION

SECTION-I

1. Ans. (B)
2. Ans. (B)
3. Ans. (B, C)
4. Ans. (B, D)
5. Ans. (D)
6. Ans. (B, D)
7. Ans. (D)

DOU $=3$ (So, option A \& C can not be answer)

(Resonance stabilisation by extended conjugation)
8. Ans. (D)

HOC :

(6c)
(5c)

Stable :

In option (D) both compound has same number of carbon \& π-bond. So, stability of compound is deciding factor for heat of hydrogenation as well as for heat of combustion.
9. Ans. (A,C,D)

Acid-base reaction favours in formation of weak acid \& weak base. Acidic strength order is :
$\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{Ph}-\mathrm{OH}>\mathrm{H}_{2} \mathrm{O}>\mathrm{HC} \equiv \mathrm{CH}$
10. Ans. (A, D)

In option (B) \& (C), given pairs are not two different compounds they represent same ion whose resonance energy is fixed.

SECTION-II

1. Ans (A)-(Q,S); (B)-(P,R,T); (C)-(Q, R, T); (D)-(Q,S)
2. Ans (A) - (Q,S); (B) - (Q,S,T); (C) - (R,S); (D) - (P,S,T)

SECTION-IV

1. Ans. (1)
$\mathrm{E}=\frac{\mathrm{hc}}{\lambda}$
$\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m} \cdot \mathrm{KE}}}=\frac{\sqrt{\mathrm{h} \lambda}}{\sqrt{2 \mathrm{mC}}}$
$=\sqrt{\frac{6 \times 10^{-3} \times 9 \times 10^{-9}}{2 \times 9 \times 10^{-31} \times 3 \times 10^{8}}}=10^{-10}=1 \AA$
2. Ans. (3)
$\mathrm{Z}=\frac{\mathrm{V}_{\text {real }}}{\mathrm{V}_{\text {ideal }}}$
$1.5=\frac{\mathrm{V}_{\text {real }}}{2}$
$\mathrm{V}_{\text {real }}=3$
3. Ans. (4)
4. Ans. (1)
5. Ans. (6)

6. Ans. (1)

Sol. $\quad \mathrm{sp}^{3}$ hybridised P atom $=3$
sp^{2} hybridised N atom $=3$
ratio $=\frac{3}{3}=1$
7. Ans. (4)
(iii)

8. Ans. (7)
(i), (ii), (iii) , (iv), (vi), (vii), (ix)

ANSWER KEY

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	A,D	A,C	A,B,C,D	A,B	A,B	A,C	B,C	A,C	A,B,C,D	B,C
SECTION-II	Q. 1	A	B	C	D	Q. 2	A	B	C	D	
		R	Q	T	T		Q	S,T	Q	T	
SECTION-IV	Q.	1	2	3	4	5	6	7	8		
	A.	7	6	3	7	3	4	8	3		

SOLUTION

SECTION-I

1. Ans. (A,D)

$$
\left(\sqrt{x}+\frac{1}{2 \sqrt[4]{x}}\right)^{n}
$$

$$
T_{r+1}={ }^{n} C_{r} \cdot(\sqrt{x})^{n-r}\left(\frac{1}{2 \sqrt[4]{x}}\right)^{r}
$$

$$
=\frac{{ }^{n} C_{r}}{2^{r}} \cdot x^{\frac{n-r}{2}} \cdot \frac{1}{x^{r / 4}}=\frac{{ }^{n} C_{r}}{2^{r}} \cdot x^{\frac{2 n-3 r}{4}}
$$

$\frac{{ }^{n} C_{0}}{2^{0}}, \frac{{ }^{n} C_{1}}{2^{1}}, \frac{{ }^{n} C_{2}}{2^{2}}$ are in A.P
${ }^{\mathrm{n}} \mathrm{C}_{1}=1+\frac{{ }^{\mathrm{n}} \mathrm{C}_{2}}{4} \Rightarrow \mathrm{n}=\frac{1+\mathrm{n}(\mathrm{n}-1)}{8}$
$\mathrm{n}^{2}-9 \mathrm{n}+8=0$
$\Rightarrow \mathrm{n}=1,8$
$\therefore \mathrm{n}=8$
$\therefore \mathrm{T}_{\mathrm{r}+1}=\frac{{ }^{8} \mathrm{C}_{\mathrm{r}}}{2^{\mathrm{r}}} \cdot \mathrm{X}^{\frac{16-3 \mathrm{r}}{4}}$
$\Rightarrow \mathrm{r}=0,4,8$
2. Ans. (A, C)
(A) $\mathrm{S}_{1} \equiv \mathrm{x}^{2}+\mathrm{y}^{2}+24 \mathrm{x}-10 \mathrm{y}+\mathrm{a}=0$
for real circle, $g^{2}+f^{2}-c \geq 0$
$144+25-\mathrm{a} \geq 0$
$\mathrm{a} \leq 169$
Also $\mathrm{a} \geq 0$
\therefore Total non-negative integral values of

$$
a=170
$$

(B) for no point in common $\mathrm{c}_{1} \mathrm{c}_{2}>\mathrm{r}_{1}+\mathrm{r}_{2}$
$\& \mathrm{c}_{1} \mathrm{c}_{2}<\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right|$
$c_{1} c_{2}=13$
$13>\sqrt{169-a}+6$
$\Rightarrow 169-\mathrm{a}<49$
$a>120 \& a \leq 169$

So in this condition we have 49 integral values of a

But from $\mathrm{c}_{1} \mathrm{c}_{2}<\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right|$,
we will get additional values of a.
for orthogonal cut
$2 \cdot 12.0+2(-5) .0=-36+a \Rightarrow a=36$
If $\mathrm{a}=0, \mathrm{c}_{1} \mathrm{c}_{2}=13 \& \mathrm{r}_{1}+\mathrm{r}_{2}=19$
$c_{1} \mathrm{c}_{2}<\mathrm{r}_{1}+\mathrm{r}_{2}$
No. of common tangent $=2$
3. Ans. (A,B,C,D)
$\sin x+\sin y=\frac{96}{65}$
$\Rightarrow \quad 2 \sin \left(\frac{\mathrm{x}+\mathrm{y}}{2}\right) \cos \left(\frac{\mathrm{x}-\mathrm{y}}{2}\right)=\frac{96}{65}$
Also $\cos x+\cos y=\frac{72}{65}$
$\Rightarrow \quad 2 \cos \left(\frac{\mathrm{x}+\mathrm{y}}{2}\right) \cos \left(\frac{\mathrm{x}-\mathrm{y}}{2}\right)=\frac{72}{65}$
(1) $\div(2)$, we get
$\tan \left(\frac{\mathrm{x}+\mathrm{y}}{2}\right)=\frac{96}{72}=\frac{8}{6}=\frac{4}{3}$
Now, $\sin (x+y)=\frac{2 \cdot \frac{4}{3}}{1+\frac{16}{9}}=\frac{24}{25}$
$\cos (x+y)=-\frac{7}{25}$
Square and add (1) \& (2)
$\cos ^{2}\left(\frac{\mathrm{x}-\mathrm{y}}{2}\right) \cdot 4=\frac{8^{2}(144+81)}{65^{2}}$
$\cos ^{2}\left(\frac{\mathrm{x}-\mathrm{y}}{2}\right)=\frac{16 \cdot 3^{2} \cdot 5^{2}}{13^{2} \cdot 5^{2}}$
$\therefore \quad \cos \left(\frac{\mathrm{x}-\mathrm{y}}{2}\right)= \pm \frac{12}{13}$
4. Ans. (A,B)

$$
\begin{aligned}
\mathrm{S}=\sum_{\mathrm{k}=0}^{2014}{ }^{2014} \mathrm{C}_{\mathrm{k}} & \cdot \mathrm{k}=2014.2^{2013} \\
= & 1007.2^{2014}=19 \times 53 \times 2^{2014}
\end{aligned}
$$

\& $E=53 \times 2^{2014}$
\therefore Highest exponent of $2=2014$
Number of divisors of $E=2015 \times 2=4030$
5. Ans. (A,B)
$\frac{1}{x-1}-\frac{4}{x-4}-\frac{5}{x-5}+\frac{8}{x-8}=\frac{6 x^{2}-27 x}{40}$
Now,
$\left(\frac{1}{x-1}+1\right)-\left(\frac{4}{x-4}+1\right)-\left(\frac{5}{x-5}+1\right)$
$+\left(\frac{8}{x-8}+1\right)=\frac{6 x^{2}-27 x}{40}$
$\mathrm{x}=0$
Clubbing $1^{\text {st }} \&$ last $\& 2^{\text {nd }} \& 3^{\text {rd }}$, we get
$\frac{2 x-9}{(x-1)(x-8)}-\frac{2 x-9}{(x-4)(x-5)}=\frac{3}{40}(2 x-9)$
$x=\frac{9}{2} \Rightarrow \frac{1}{(x-1)(x-8)}-\frac{1}{(x-4)(x-5)}=\frac{3}{40}$
Solving, we get $x=9$
Now, we can verify the options.
6. Ans. (A,C)

Put $2 \sqrt{2}\left|\sin ^{3} \mathrm{x}\right|=\mathrm{a},\left|\tan ^{3} \mathrm{x}\right|=\mathrm{b},\left|\cot ^{3} \mathrm{x}\right|=\mathrm{c}$ we get $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{3}{2}$
$\Rightarrow \frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{b}+\mathrm{c}}+\frac{\mathrm{b}+\mathrm{c}+\mathrm{a}}{\mathrm{c}+\mathrm{a}}+\frac{\mathrm{c}+\mathrm{a}+\mathrm{b}}{\mathrm{a}+\mathrm{b}}=\frac{9}{2}$
$(a+b+c)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)=\frac{9}{2}$
Using $\mathrm{AM} \geq \mathrm{HM}$,

$$
\begin{aligned}
& \frac{(a+b)+(b+c)+(c+a)}{3} \geq \frac{3}{\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}} \\
& (a+b+c)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right) \geq \frac{9}{2} \\
& a=b=c \\
& 2 \sqrt{2}\left|\sin ^{3} x\right|=\left|\tan ^{3} x\right|=\left|\cot ^{3} x\right|
\end{aligned}
$$

$\therefore \quad \mathrm{x}=2 \mathrm{n} \pi \pm \frac{\pi}{4}(\mathrm{n} \in \mathrm{I})$
$\therefore \quad$ Number of solution in $[0,4 \pi]$ is 8
(C) $\mathrm{n}(\mathrm{A})=6 ; \mathrm{n}(\mathrm{B})=10$
\therefore Number of functions $=10^{6}$
(D) Sum of $4(+)$ ve solutions

$$
\frac{\pi}{4}+\frac{3 \pi}{4}+\frac{5 \pi}{4}+\frac{7 \pi}{4}=4 \pi
$$

7. Ans. (B,C)

Rationalise
$f(\mathrm{x})=\frac{1}{2}\left[(\mathrm{x}+1)^{1 / 3}-(\mathrm{x}-1)^{1 / 3}\right]$
$f(1)=\frac{1}{2}\left[2^{1 / 3}-0^{1 / 3}\right]$
$f(3)=\frac{1}{2}\left[4^{1 / 3}-2^{1 / 3}\right]$
$f(5)=\frac{1}{2}\left[6^{1 / 3}-4^{1 / 3}\right]$
$f(999)=\frac{1}{2}\left[(1000)^{1 / 3}-(999)^{1 / 3}\right]$
$\therefore \mathrm{E}=\frac{1}{2} \times 10=5$
Now, for (c) part
$\mathrm{T}_{\mathrm{r}+1} \gtrless \mathrm{~T}_{\mathrm{r}}$
${ }^{7} \mathrm{C}_{\mathrm{r}} \cdot\left(\frac{1}{3}\right)^{\mathrm{r}} \gtrless{ }^{7} \mathrm{C}_{\mathrm{r}-1}\left(\frac{1}{3}\right)^{\mathrm{r}-1}$
$\frac{1}{\mathrm{r}} \cdot \frac{1}{3} \gtrless \frac{1}{8-\mathrm{r}}$
$8-r \gtrless 3 r$
$2 \gtrless r$
\therefore Greatest terms are $\mathrm{T}_{2} \& \mathrm{~T}_{3}$.
8. Ans. (A,C)
$f(x)=\left\{\begin{array}{cc}\frac{1}{x} & 0<x \leq 1 \\ x & 1<x \leq 3 \\ 6-x & 3<x \leq 6 \\ x-6 & x>6\end{array}\right.$
Plotting $f(\mathrm{x})$ we get

Clearly, if a,b,c,d are positive distinct numbers such that $f(\mathrm{a})=f(\mathrm{~b})=f(\mathrm{c})=f(\mathrm{~d})$, then $y=t \in(1,3)$ must intersect
the graph of $\mathrm{y}=f(\mathrm{x})$ at four points
$\therefore \mathrm{a}=\frac{1}{\mathrm{t}}, \mathrm{b}=\mathrm{t}, \mathrm{c}=6-\mathrm{t}, \mathrm{d}=\mathrm{t}+6$
$\therefore \mathrm{abcd}=36-\mathrm{t}^{2}$
$\mathrm{t}^{2} \in(1,9)$
\therefore Range of abcd is $(27,35)$
\therefore Number of integral values in the range 7 .
9. Ans. (A,B,C,D)
(A) $f(\mathrm{x})$ is odd $\therefore \mathrm{a}+2=-\mathrm{b}+7 \Rightarrow \mathrm{a}+\mathrm{b}=5$
(B) Clearly $x^{2} \in(0,1) \Rightarrow\left[x^{2}\right]=0$

$$
\Rightarrow f(\mathrm{x})=\frac{1}{\sqrt{1-\mathrm{x}^{2}}} \Rightarrow \text { even }
$$

(C) for sum of coefficients; put $\mathrm{x}=1 \therefore f(0)=1$
10. Ans. (B,C)
$\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=\frac{15 \pi+\pi}{32}=\frac{\pi}{2}$
$\therefore \tan (\mathrm{D}+\mathrm{E}+\mathrm{F})=\frac{\mathrm{s}_{1}-\mathrm{s}_{3}}{1-\mathrm{s}_{2}}$
$\therefore \mathrm{s}_{2}=1$
$\therefore \tan D \tan E+\tan E \tan F+\tan F \tan D=1$
$\& \cot \mathrm{D}+\cot \mathrm{E}+\cot \mathrm{F}=\cot \mathrm{D} \cot \mathrm{E} \cot \mathrm{F}$
SECTION - II

1. Ans. (A) $\rightarrow(\mathbf{R}) ;(\mathbf{B}) \rightarrow(\mathbf{Q}) ;(\mathbf{C}) \rightarrow(\mathbf{T}) ;(\mathrm{D}) \rightarrow(\mathbf{T})$
(A) $\sum_{n=0}^{\infty} 2^{-n+(-1)^{n}}=2+2^{-2}+2^{-1}+2^{-4}+\ldots . \infty$
$=\left(2+\frac{1}{2}+\frac{1}{2^{3}}+\ldots \infty\right)+\left(\frac{1}{2^{2}}+\frac{1}{2^{4}}+\frac{1}{2^{6}}+\ldots \infty\right)$
$=\frac{2}{1-\frac{1}{2^{2}}}+\frac{\frac{1}{2^{2}}}{1-\frac{1}{2^{2}}}=\frac{2.4}{3}+\frac{1}{3}=3$
(B) Put $\sin x=t$, we get

$$
16 t^{3}=14+\sqrt[3]{t+7}
$$

$\therefore \quad f(\mathrm{t})=f^{-1}(\mathrm{t})$
$\sin \mathrm{x}=1 \Rightarrow \mathrm{x}=2 \mathrm{n} \pi+\frac{\pi}{2}(\mathrm{n} \in \mathrm{I})$
$\therefore 2$ solutions.
(C) $\tan ^{-1}(2 \sin x)=\cot ^{-1}(\cos x)$
$\tan ^{-1}(2 \sin x)+\tan ^{-1}(\cos x)=\frac{\pi}{2}$
$\therefore \quad \sin x>0, \cos x>0 \& 2 \sin x \cos x=1$
$\therefore \quad \mathrm{x}=2 \mathrm{n} \pi+\frac{\pi}{4}$
$\Rightarrow 5$ solutions
(D) Sum of roots

$$
=\frac{a^{2}-a+4}{a-1}=a+\frac{4}{a-1}=a-1+\frac{4}{a-1}+1 \geq 5
$$

Minimum value is 5
2. Ans. $(\mathbf{A}) \rightarrow(\mathbf{Q}) ;(\mathbf{B}) \rightarrow(\mathbf{S}, \mathbf{T}) ;(\mathbf{C}) \rightarrow(\mathbf{Q}) ;(\mathrm{D}) \rightarrow(\mathbf{T})$
(A) $\sum_{n=0}^{\infty} \tan ^{-1}\left(\frac{2}{(\sqrt{n+2}+\sqrt{n})(1+\sqrt{n+2} \sqrt{n})}\right)$
$=\sum_{\mathrm{n}=0}^{\infty} \tan ^{-1}\left(\frac{\sqrt{\mathrm{n}+2}-\sqrt{\mathrm{n}}}{1+\sqrt{\mathrm{n}+2} \sqrt{\mathrm{n}}}\right)$
$=\sum_{\mathrm{n}=0}^{\infty}\left(\tan ^{-1} \sqrt{\mathrm{n}+2}-\tan ^{-1} \sqrt{\mathrm{n}}\right)$
$=\frac{3 \pi}{4} \quad \therefore \quad\left[\frac{3 \pi}{4}\right]=2$
(B) $\mathrm{c}>|\mathrm{a}-\mathrm{b}| \Rightarrow \mathrm{c}^{2}>\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab}$

Similarly, $a^{2}>b^{2}+c^{2}-2 b c$

$$
\mathrm{b}^{2}>\mathrm{a}^{2}+\mathrm{c}^{2}-2 \mathrm{ac}
$$

$\Rightarrow a^{2}+b^{2}+c^{2}<2(a b+b c+c a)$

$$
2 \frac{\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)}{\mathrm{ab}+\mathrm{bc}+\mathrm{ca}}<4
$$

(C) $\mathrm{a}^{2}(\mathrm{~b}+\mathrm{c})=\mathrm{b}^{2}(\mathrm{a}+\mathrm{c})$
$a^{2} b-b^{2} a+a^{2} c-b^{2} c=0$
$a b(a-b)+c(a-b)(a+b)=0$
$a \neq b$
$\therefore \quad \mathrm{ab}+\mathrm{ac}+\mathrm{bc}=0$
Multiply both sides by $(a-c)$,
we get $(a-c)(a b+a c+b c)=0$
$\mathrm{a}^{2} \mathrm{~b}+\mathrm{a}^{2} \mathrm{c}-\mathrm{ac}^{2}-\mathrm{bc}^{2}=0$
$a^{2}(b+c)=c^{2}(a+b)=2$
(D) $\mathrm{P}^{2}+\mathrm{Q}^{2}+\mathrm{R}^{2}+\mathrm{S}^{2}$

$$
\begin{aligned}
= & \sin ^{2} \mathrm{~A} \sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C} \cos ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~A} \cos ^{2} \mathrm{~B} \\
& +\cos ^{2} \mathrm{~A} \cos ^{2} \mathrm{C} \\
= & \sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1
\end{aligned}
$$

SECTION-IV

1. Ans. 7

$\sin (\mathrm{x}-\mathrm{y}) \sin (\mathrm{x}+\mathrm{y})=\sin ^{2} \mathrm{x}-\sin ^{2} \mathrm{y}$
$\therefore \mathrm{E}=\sin ^{2}\left(\sin ^{-1}(0.5)\right)-\sin ^{2}\left(\sin ^{-1}(0.4)\right)=0.09$
2. Ans. 6

Interpret the problem geometrically consider n right triangle joined at their vertices with bases $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots \ldots . ., \mathrm{a}_{\mathrm{n}}$ and heights $1,3, \ldots ., 2 \mathrm{n}-1$. The sum of their hypotenusses is the value of S_{n}. The minimum value of S_{n}, then is the length of the straight line. Connecting the bottom vertex of first right triangle \& the top vertex of the last right triangle, so

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}} \geq \sqrt{\left(\sum_{\mathrm{k}=1}^{\mathrm{n}}(2 \mathrm{k}-1)^{2}\right)+\left(\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}\right)^{2}} \\
& \therefore \mathrm{~S}_{\mathrm{n}} \geq \sqrt{17^{2}+\mathrm{n}^{4}}
\end{aligned}
$$

$$
\text { Now } 17^{2}+n^{4}=m^{2}(m \in I)
$$

$$
\left(\mathrm{m}-\mathrm{n}^{2}\right)(\mathrm{m}+\mathrm{n})=289.1
$$

$$
\therefore \mathrm{n}^{2}=144 \therefore \mathrm{n}=12
$$

3. Ans. 3

using pythogoreas theorem
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{CA}^{2}$
$10^{2}+6^{2}+10.6+6^{2}+\mathrm{PC}^{2}+6 \mathrm{PC}$
$=10^{2}+\mathrm{PC}^{2}+10 \mathrm{PC}$
$\Rightarrow 4 \mathrm{PC}=132 \Rightarrow \mathrm{PC}=33$
4. Ans. 7

$$
\begin{aligned}
& \sum_{n=1}^{2015}(-1)^{\mathrm{n}}\left(\frac{\mathrm{n}}{(\mathrm{n}-1)!}+\frac{\mathrm{n}+1}{\mathrm{n}!}\right) \\
& =\left(-1-\frac{2}{1!}\right)+\left(\frac{2}{1!}+\frac{3}{2!}\right)-\left(\frac{3}{2!}+\frac{4}{3!}\right)+\ldots \ldots \\
& \quad-\left(\frac{2015}{(2014)!}+\frac{2016}{(2015)!}\right) \\
& =-1-\frac{2016}{(2015)!} \quad \therefore \quad a+b+c=4032
\end{aligned}
$$

5. Ans. 3

Order at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ is one
${ }^{6} \mathrm{C}_{3} \cdot 3!=\frac{6!}{3!} \quad \therefore \mathrm{n}=3$
6. Ans. 4

Let $\mathrm{x}=\mathrm{k} \sin \theta \& \mathrm{y}=\mathrm{k} \cos \theta$
$\therefore \frac{\cos ^{4} \theta}{\sin ^{4} \theta}+\frac{\sin ^{4} \theta}{\cos ^{4} \theta}=\frac{194 \sin \theta \cos \theta}{\sin \theta \cos \theta\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}=194$
$\therefore \mathrm{t}=\frac{\mathrm{x}}{\mathrm{y}}+\frac{\mathrm{y}}{\mathrm{x}}$, then $\left(\mathrm{t}^{2}-2\right)^{2}-2=194$
$\therefore \mathrm{t}=4$
7. Ans. 8

Let D be the point of tangency of C_{1} and $\mathrm{C}_{2} . \mathrm{T}$ will be radical center of 3 circles.
$\therefore \mathrm{TD}=4$
Now, $\tan \left(\frac{\angle \mathrm{ATD}}{2}\right)=\frac{1}{2} \& \tan \left(\frac{\angle \mathrm{BTD}}{2}\right)=\frac{3}{4}$
\therefore Radius of $\mathrm{C}_{3}=\mathrm{TA} \tan \left(\frac{\angle \mathrm{ATB}}{2}\right)=8$
8. Ans. 3

$$
\begin{aligned}
& { }^{n} C_{m} \cdot{ }^{m} C_{p}=\frac{n!}{m!(n-m)!} \times \frac{m!}{(m-p)!p!} \times \frac{(n-p)!}{(n-p)!} \\
& \quad={ }^{n} C_{p} \cdot{ }^{n-p} C_{m-p} \\
& \therefore \sum_{p=1}^{n} \sum_{m=p}^{n} C_{p}{ }^{n-p} C_{m-p}=\sum_{p=1}^{n}{ }^{n} C_{p}\left({ }^{n-p} C_{0}+{ }^{n-p} C_{1}+\ldots . .+{ }^{n-p} C_{n-p}\right) \\
& =\sum_{p=1}^{n}{ }^{n} C_{p} \cdot 2^{n-p}=\sum_{p=0}^{n}{ }^{n} C_{p} 2^{n-p}-2^{n} \\
& =3^{n}-2^{n}=19 \\
& \therefore n=3
\end{aligned}
$$

