HINTS \& SOLUTIONS

CHEMISTRY

Dibrorane str.

1. (A)

2. (A)

3. (B)
4. (B)

Let moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=x \& \mathrm{NaHCO}_{3}=y$ then
for phenolphthalein indicator
$x \times \frac{1}{2}+0=5 \times 10^{-3} \times \frac{1}{10}$
for methyl orange
$x+y=15 \times 10^{-3} \times \frac{1}{10}$
so,
$x=5 \times 10^{-4}$
$x=\frac{\text { mass of } \mathrm{Na}_{2} \mathrm{CO}_{3}}{106}=5 \times 10^{-4}$
Mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=5 \times 10^{-4} \times 106 \mathrm{~g}$
$=5.3 \times 10^{-2}$
$=0.053 \mathrm{~g}$
5. (A)
6. (A)

$$
\begin{aligned}
& \mathrm{E}=\omega+\mathrm{KE} \\
& \frac{\mathrm{hc}}{\lambda}=\frac{\mathrm{hc}}{\lambda_{0}}+\mathrm{KE} \\
& \lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mKE}}} \Rightarrow \lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m} \times \mathrm{hc}\left[\frac{1}{\lambda}-\frac{1}{\lambda_{0}}\right]}} \\
& \lambda=\sqrt{\frac{\mathrm{h} \lambda \lambda 0}{2 \mathrm{mc}\left(\lambda_{0}-\lambda\right)}}
\end{aligned}
$$

Assertion \& Reason

7. (C)
8. (A)
9. (C)

Para \# 1 (Q. 10 to 12)
10. (C)
11. (D)
12. (D)

Para \# 2 (Q. 13 to 15)

$$
\begin{aligned}
& \mathrm{CO}+\mathrm{Cl}_{2} \rightleftharpoons \mathrm{COCl}_{2} \\
& \mathrm{t}=0 \quad 342 \mathrm{~mm} \quad 351.4 \mathrm{~mm} \quad 0 \\
& \mathrm{t}=\mathrm{t} \quad 342 \mathrm{~mm}-\mathrm{x} \quad 351.4 \mathrm{~mm}-\mathrm{x} \quad \mathrm{x} \\
& P_{\text {equilibrium }}=(342 m m-x)+(351.4 m m-x)+x \\
& 439.5 \mathrm{~mm}=693.4-x \\
& x=253.9 \mathrm{~mm}
\end{aligned}
$$

13. (C)
$x=253.9 \mathrm{~nm}$
14. (C)
$\mathrm{k}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{COCl}_{2}}}{\mathrm{P}_{\mathrm{CO}} \mathrm{P}_{\mathrm{Cl}_{2}}}=22.5 \mathrm{~atm}^{-1}$
15. (B)
k_{P} remains constant it will only depends on temperatures.

Matrix - Match

1. $A-s, B-p, C-r, D-q, t$
2. $A-p, q, r ; B-p, q, s ; C-q, s ; D-r$
(A) Pressure \uparrow so volume decreases, concentration of each species \uparrow that's why rate of forward and backward reaction \uparrow
$R_{f}=R_{b}$
$Q=K_{e q}$
(B) volume \downarrow so concentration increases that's why rate of forward and backward reaction \uparrow $Q \neq K_{\text {eq }}$.
(C) By the addition of $\mathrm{NH}_{3},\left[\mathrm{NH}_{3}\right] \uparrow$ (rate backward \uparrow
$Q \neq K_{\text {eq }}$
(D) Inert gas added at constant volume $\mathrm{P}_{\mathrm{PCl}_{5}}, \mathrm{P}_{\mathrm{PCl}_{3}}, \mathrm{P}_{\mathrm{Cl}_{2}}$ do not change
$(\text { Rate })_{f}=(\text { Rate })_{b}$

HITS \& SOLUTIONS (MATHS)

1. Taking L.C.M.
$\left[1-\frac{\sin ^{2} y}{1+\cos y}\right]+\left[\frac{1+\cos y}{\sin y}-\frac{\sin y}{1-\cos y}\right]$
$=\frac{1+\cos y-\sin ^{2} y}{1+\cos y}+\frac{1-\cos ^{2} y-\sin ^{2} y}{\sin y \cdot(1-\cos y)}$
$=\frac{\cos y+\cos ^{2} y}{1+\cos y}+0=\cos y$
Ans.[D]
2. D

Equation of the normal to the parabola $y^{2}=4 x$ is
$y=-t x+2 t+t^{3}$
Therefore, condition for current lines will be
$\left|\begin{array}{ccc}p & 1 & 2 p+p^{3} \\ q & 1 & 2 q+q^{3} \\ r & 1 & 2 r+r^{3}\end{array}\right|=0$
$\Rightarrow p+q+r=0 \quad(\because p \neq q \neq r)$
\therefore Common root between the given quadratic equation is 1
3. A
4. B

Line \perp to $a x+b y+c=0$ passing through $(2,0)$ is $b x-a y=2 b$
5. C
$\sqrt{13}=\left|\frac{4-2+c}{\sqrt{5}}\right| \Rightarrow|c+2|=\sqrt{65}$
$C_{1}+2=\sqrt{65}$
$c_{1}+2=-\sqrt{65}$
$\mathrm{c}_{1}+\mathrm{C}_{2}=-4$
6. C

Any point on the given parabola is $\left(t^{2}, 2 t\right)$. The equation of the tangent at $(1,2)$ is $x-y+1=0$ The image (h, k) of the point $\left(t^{2}, 2 t\right)$ in $x-y+1=0$
The image (h, k) of the point $\left(t^{2}, 2 t\right)$ in $x-y+1=0$ is given by $\frac{h-t^{2}}{1}=\frac{k-2 t}{-1}=-\frac{2\left(t^{2}-2 t+1\right)}{1+1}$
$h=t^{2}-t^{2}+2 t-1=2 t-1$ and $k=2 t+t^{2}-2 t+1=t^{2}+1$

Eliminating t from $\mathrm{h}=2 \mathrm{t}-1$ and $\mathrm{k}=\mathrm{t}^{2}+1$,
We get $(h+1)^{2}=4(k-1)$
The required equation of reflection is $(x+1)^{2}=4(y-1)$.
7.

Obviously family of circles touching a line at a point
8. A
$\mathrm{t}_{2}=-\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}}$ and $\mathrm{t}_{4}=-\mathrm{t}_{3}-\frac{2}{\mathrm{t}_{3}}$
Adding, we get $t_{2}+t_{4}=-t_{1}-t_{3}-\frac{2}{t_{1}}-\frac{2}{t_{3}}$
$\Rightarrow \mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{4}=-\frac{2}{\mathrm{t}_{1}}-\frac{2}{\mathrm{t}_{3}}$
$\Rightarrow \frac{1}{\mathrm{t}_{1}}+\frac{1}{\mathrm{t}_{3}}=0 \Rightarrow \mathrm{t}_{1}+\mathrm{t}_{3}=0$
Now, point of intersection of tangents at A and C will be $\left(a t_{1} t_{3}, 4\left(t_{1}+t_{3}\right)\right)$. Since $t_{1}+t_{3}=0$, This point will lie on X-axis, which is axis of parabola.
9. A
10. B
11. A
12. B

Chord of contact from $\mathrm{p}(\alpha, \beta)$
$(\alpha-2) x+(\beta-3) y+4-2 \alpha-3 \beta=0$
Comparing $2 x+y=3$
$(\alpha, \beta) \equiv\left(-\frac{5}{2}, \frac{3}{4}\right)$
\therefore circumcirlce $\Rightarrow\left(x+\frac{5}{2}\right)(x-2)+\left(y-\frac{3}{4}\right)(y-3)=0$
Line \perp to $2 x+y=3$ passing through $(2,3)$ is $x-2 y+4=0$
$\therefore \mathrm{M}$ is point of intersection
13. (D)
14. (A)
15. (D)

The equations of the bisectors are givne by $x . y=0$ and $x+y+2=0$
There bisectors intersect at the point $P(-1,-1)$.
Focus S, is the foot of parallel from P to $M N$, where $[M(1,1), N(0,-2)]$
i.e. point of intersection of lines, $M N(3 x-y-2=0)$ and $P S(x+3 y+4=0)$
\therefore Focus is $\left(\frac{1}{5}, \frac{-7}{5}\right) \mathrm{MS}=\sqrt{\frac{2}{5}}, \mathrm{NS}=4 \sqrt{\frac{2}{5}}$
Length of latus rectum $=2\left[\frac{2\left(\sqrt{\frac{2}{5}}\right)\left(4 \cdot \sqrt{\frac{2}{5}}\right)}{\sqrt{\frac{2}{5}}+4 \sqrt{\frac{2}{5}}}\right]$
$=\frac{16 \sqrt{2}}{5^{3 / 2}}$
Circle passing through PMN is
$(x-0) \cdot(x-1)+(y-1)(y+2)=0 \Rightarrow x^{2}+y^{2}-x+y-2=0$
\therefore Equation of tangent at $(-1,-1)$, which is also the equation of directrix, is $3 x+y+4=0$

1. $A-R, B-Q, C-P S, D-S T$
(a) $\mathrm{K}=\mathrm{mh}-\mathrm{m}^{2} \Rightarrow \mathrm{~m}^{2}-\mathrm{hm}+\mathrm{K}=0$
$\Rightarrow \mathrm{m}_{1}+\mathrm{m}_{2}=\mathrm{h}$ and $\mathrm{m}_{1} \mathrm{~m}_{2}=\mathrm{k}$
If tangents intersect axes at concyclic points, then
$\mathrm{m}_{1} \mathrm{~m}_{2}=1 \Rightarrow \mathrm{~K}=1 \quad \therefore$ Locus of P is $\mathrm{y}=1$
(b) $y^{2}-4 y-2 x=0 \Rightarrow(y-2)^{2}=2(x+2)$

It's directrix is $x+2=-\frac{2}{4} \Rightarrow 2 x+5=0$
(c) Any point on the parabola is $P\left(t^{2}, 2 t\right)$. The circumcentre $Q(h, k)$ of $\Delta P A B$ is mid-point of $P\left(t^{2}, 2 t\right)$ and the centre $C(-3,2)$ of the circle. Hence,

$$
h=\frac{t^{2}-3}{2}, \text { and } k=t+1
$$

Elimination t, we get $(k-1)^{2}=2 h+3$
\therefore Locus of $\mathrm{P}(\mathrm{h}, \mathrm{k})$ is $-(\mathrm{y}-1)^{2}=2 \mathrm{x}+3=2\left(\mathrm{x}+\frac{3}{2}\right)$
Which is a parabola, whose tangent at the vertex is $x+\frac{3}{2}=0$
Also, a tangent to parabola with slope 1 is

$$
y-1=1\left(x+\frac{3}{2}\right)+\frac{1}{2} \Rightarrow y-1=x+2 \Rightarrow y=x+3
$$

A tangent to parabola with slope -1 is $y-1=-1\left(x+\frac{3}{2}\right)+\frac{\frac{1}{2}}{-1}$
$\Rightarrow y-1=-x-2 \Rightarrow y=-x-1$
(d) A tangent to parabola $y^{2}=12 x$ is $y=m x+\frac{2}{m}$, which is tangent to circle
$2\left(x^{2}+y^{2}\right)=9 \Rightarrow x^{2}+y^{2}=\frac{9}{2}$ if
$\Rightarrow\left(\frac{3}{\mathrm{~m}}\right)^{2}=\frac{9}{2}\left(1+\mathrm{m}^{2}\right) \Rightarrow \mathrm{m}^{4}+\mathrm{m}^{2}-2=0 \Rightarrow \mathrm{~m} \pm 1$
\therefore The equation of two common tangents are $y=x+3$ or $y=-x-3$
2. A-R;B-P ; C-S; D- Q

Lines passing through points of intersection of lines $(2 x-3 y)+\lambda(4 x-5 y-2)=0$

PHYSICS

1. A

After 2 sec
$\mathrm{a}=10 \mathrm{~ms}^{2}$
$v=0$ at $t=2 \mathrm{sec}$
$\mathrm{F}=10 \mathrm{~N}$

$\mathrm{v}=0$
2. B

Component of \vec{A} along \vec{B} is $=|\vec{A}| \cos \theta$
Where $\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta$
$\therefore|\vec{A}| \cos \theta=\frac{\vec{A} \cdot \vec{B}}{|\vec{B}|}=\frac{8-2-2}{\sqrt{4+1+4}}=\frac{4}{3}$
3. A
$v=2 x$
$\frac{d x}{d t}=2 x$
$\int_{2}^{x} \frac{d x}{x}=2 \int_{0}^{t} d t$
$\ln \frac{x}{2}=2 t$
$\mathrm{v}=4 \mathrm{e}^{2 \mathrm{t}}$
$\therefore v=4 e^{4}$ at $t=2$
4. $\quad \mathrm{D}$
$v=m x+c$
$A=m v \Rightarrow a=m[m x+c] \Rightarrow a=m^{2} x+m c$
5. B
$D=\frac{g}{2} \times 3^{2}$ also $D=\frac{g t^{2}}{2}-\frac{g}{2}(t-1)^{2}$
Solving we get $\mathrm{t}=5 \mathrm{sec}$.
6. B

By WET
$-\mathrm{f}_{\ell} \mathrm{x}-\frac{3}{5} \mathrm{mgx}=0-\frac{1}{2} \mathrm{~m} \times 10^{2}$
$-\mu m g \cos 37 x-\frac{m g x}{2}\left(\frac{3}{5}\right)=-\frac{m}{2} \times 100=50$
$10 x=50$
Therefore $x=5$
7. Assertion is false but reason is true.
8. B
9. Assertion is false but reason is true.
10. B
11. A
12. D

By coe
$\frac{1}{2} m v^{2}=\frac{1}{2} m v^{\prime 2}+m g \ell(1-\cos \theta)$
$v^{\prime}=\sqrt{6}$
$\mathrm{T}-\mathrm{mg} \cos \theta=\frac{\mathrm{mv}^{\prime 2}}{\ell} \Rightarrow \mathrm{~T}=\frac{35}{2} \mathrm{~N}$

By coe
$\frac{1}{2} m v^{2}=\frac{1}{2} m v^{\prime 2}+m g \ell(1+\sin \alpha)$
And $m g \sin \alpha=\frac{m v^{2}}{\ell}$
Solving we get $\sin \alpha=\frac{2}{3} \therefore \mathrm{~h}=\ell \sin \alpha=\frac{40}{3} \mathrm{~cm}$
13. C
14. A
15. D

$\mathrm{F}-\mathrm{Mg} \sin \theta=\mathrm{Ma}$
$120-12 \times 10 \times \frac{3}{5}=12 \times a$
$\mathrm{a}=4 \mathrm{~m} / \mathrm{s}^{2}$

Matrix Matching :

1. A-PS, B-PS, C-R, D-R

$\therefore \mathrm{T}=2 \mathrm{mg}$ at equilibra
When spring is cut equation becomes
$\mathrm{T}-\mathrm{mg}=\mathrm{ma}$
$2 \mathrm{mg}-\mathrm{mg}=\mathrm{ma} \Rightarrow \mathrm{a}=\mathrm{g}$
2. $A-R, B-R, C-Q R, D-P Q R$

Let $f_{A B}, f_{B C}$ and f_{c} be limiting frictions
Then $f_{A B}=8 N, f_{B C}=15 N, f_{C}=10 \mathrm{~N}$
So when $F>10 \mathrm{~N} C$ will move for motion between B and C
F > 20

