

ALL INDIA INTERNAL TEST SERIES

CHEMISTRY, MATHEMATICS & PHYSICS

CLASS XIIth

SET – A

126884

Ai²TS – 7

ANSWER KEY

Chemistry (Section – I)			Mathematics (Section – II)		Physics (Section – III)			
1	D	C114705	1	С	M110102	1	В	P120406
2	С	C121403	2	С	M110116	2	А	P111027
3	Α	C121601	3	D	M110303	3	С	P112328
4	С	C121602	4	А	M111214	4	В	P120414
5	D	C122901	5	С	M110413	5	А	P112314
6	D	C121402	6	В	M110411	6	В	P111009
7	А	C121504	7	С	M110518	7	А	P120302
8	D	C122906	8	В	M110514	8	А	P110912
9	Α	C122901	9	D	M110308	9	А	P110903
10	D	C122901	10	В	M110308	10	А	P110903
11	В	C121808	11	С	M110514	11	А	P111211
12	В	C121809	12	С	M111222	12	А	P111211
13	Α	C121407	13	С	M111210	13	В	P120305
14	В	C121407	14	В	M111210	14	В	P120305
15	С	C121802	15	С	M113205	15	В	P120414
16	Α	C121802	16	D	M113205	16	С	P120414
17	R,P,S,Q	-	17	S,R,Q,P	M110115	17	R,P,S,Q	P110921
18	PQST,ST,P,R	C121401	18	Q,P,R,S	M110310	18	P,P,Q,S	P111203
19	PR,R,S,PR	C121402	19	S,Q,Q,PR	M112108	19	S,R,S,Q	P111030
20	PS,QS,P,R	C122811	20	Q,S,R,P	M110322	20	QS,PS,QR,R	P120404

ALL INDIA INTERNAL TEST SERIES

CHEMISTRY, MATHEMATICS & PHYSICS

CLASS XIIth

SET – B

126885

Ai²TS – 7

ANSWER KEY

Chemistry (Section – I)			Mathematics (Section – II)		Physics (Section – III)			
1	D	C122901	17	С	M110116	1	А	P112314
2	D	C121402	18	Α	M111214	2	В	P111009
3	Α	C121504	19	В	M110411	3	А	P120302
4	D	C122906	20	В	M110514	4	А	P110912
5	D	C114705	17	С	M110102	5	В	P120406
6	С	C121403	18	D	M110303	6	А	P111027
7	А	C121601	19	С	M110413	7	С	P112328
8	С	C121602	20	С	M110518	8	В	P120414
9	В	C121808	17	С	M110514	9	В	P120305
10	В	C121809	18	С	M111222	10	В	P120305
11	А	C122901	19	D	M110308	11	В	P120414
12	D	C122901	20	В	M110308	12	С	P120414
13	С	C121802	13	С	M113205	13	А	P110903
14	А	C121802	14	D	M113205	14	А	P110903
15	Α	C121407	15	С	M111210	15	А	P111211
16	В	C121407	16	В	M111210	16	А	P111211
17	PR,R,S,PR	C121402	17	Q,P,R,S	M110310	17	S,R,S,Q	P111030
18	PS,QS,P,R	C122811	18	Q,S,R,P	M110322	18	QS,PS,QR,R	P120404
19	R,P,S,Q	-	19	S,R,Q,P	M110115	19	R,P,S,Q	P110921
20	PQST,ST,P,R	C121401	20	S,Q,Q,PR	M112108	20	P,P,Q,S	P111203

2.	$A \rightarrow PQST$ (Concept Code: C	B → ST 121401)	$C\toP$	$D \to R$
3.	$A \rightarrow PR$ (Concept Code: C	B → R 121402)	$C\toS$	$D\toPR$
4.	$A \rightarrow PS$ (Concept Code: C	B → QS 122811)	$C\toP$	$D\toR$

Single Correct Type (01 – 08)

 $\begin{array}{ll} 1. & D \geq 0 \\ & 3 \; (ab+bc+ca)-(a+b+c)^2 \geq 0 \\ & ab+bc+ca-(a^2+b^2+c^2) \geq 0 \\ & \Rightarrow (a-b)^2+(b-c)^2+(c-a)^2 \leq \ 0 \end{array}$

2. Use transformation
$$\left(\text{replace } x \text{ by } \frac{x-1}{x+1} \right)$$

3. Put
$$z = x + iy$$
. We get $z = \frac{9}{4} + iy$, where $y < 0$

4.
$$(x-6)(y-15) = 2 \times 3^2 \times 5$$

When both x and y are even, $(x-6)$ and $(y-15)$ are even and odd respectively. So, 2 must be used with the first bracket. Number of ways = 6.
5. ${}^{n}C_{1} - \left(1 + \frac{1}{2}\right) {}^{n}C_{2} + \left(1 + \frac{1}{2} + \frac{1}{3}\right) {}^{n}C_{3} - ... + \left(-1\right)^{n-1} \left(1 + \frac{1}{2} + ... + \frac{1}{n}\right) {}^{n}C_{n}$

$$= (C_{1} - C_{2} + C_{3} - ...) - \frac{1}{2}(C_{2} - C_{3} + C_{4} - ...) + \frac{1}{3}(C_{3} - C_{4} + C_{5} - ...) - ...$$

$$= C_{0} + \frac{1}{2}(C_{0} - C_{1}) + \frac{1}{3}(C_{0} - C_{1} + C_{2}) + ...$$

$$= ^{n-1}C_{0} + \frac{1}{2} ^{n-1}C_{1}(-1)^{1} + \frac{1}{3} ^{n-1}C_{2}(-1)^{2} + \frac{1}{4} ^{n-1}C_{3}(-1)^{3} + ... = \frac{1}{n}$$
 (consider $(1 - x)^{n} \times (1 - x)^{-1}$)

6.
$$a_{n} = (\ln 3)^{n} \times \sum_{r=1}^{n} \frac{r^{2}}{r!(n-r)!} = \frac{(\ln 3)^{n}}{n!} (n(n-1).2^{n-2} + n.2^{n-1})$$
$$= (\ln 3)^{2} \times \frac{(2\ln 3)^{n-2}}{(n-2)!} + (\ln 3) \times \frac{(2\ln 3)^{n-1}}{(n-1)!}$$
Hence,
$$\sum_{r=1}^{\infty} a_{r} = (\ln 3)^{2} \times e^{2\ln 3} + (\ln 3) \times e^{2\ln 3} = 9(\ln 3)^{2} + 9\ln 3$$

7.
$$\sum_{r=2}^{n} \frac{1}{2} \left(\frac{(r+1) - (r-1)}{r(r+1)(r-1)} \right) = \frac{1}{2} \sum_{r=2}^{n} \left(\frac{1}{r(r-1)} - \frac{1}{r(r+1)} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{n(n+1)} \right)$$

8.
$$(0,0,0)$$
 or $\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$
 $x = y = z = 0$ is obviously true.
Let x, y, z be non-zero. Then, $y = \frac{2x}{2x + \frac{1}{2x}} \le x$.

Similarly, $z \le y$ and $x \le z$. This is possible only when $x = y = z = \frac{1}{2}$.

(9 – 10)

The given equation, after multiplying both sides by z, can be written as $z^5 - 5z^4 + 10z^3 - 10z^2 + 5z = 0$ or $(z - 1)^5 = -1$, where $z \neq 0$. The roots of this equation are $z - 1 = e^{i\frac{\pi}{5}}, e^{i\frac{3\pi}{5}}, e^{i\frac{9\pi}{5}}, e^{i\frac{9\pi}{5}}$.

(11 – 12)

1

1.
$$f(1) + f(2) + f(3) = 1100$$

 $S = f(1) + 2f(2) + 3f(3)$
Apply $AM \ge GM$.
 $\frac{S}{3} \ge (6f(1)f(2)f(3))^{1/3} \implies S^3 \ge 162f(1)f(2)f(3)$
Hence, $f(1) = 2f(2) = 3f(3)$.

12. $X_1 = 99$ and $X_2 = 1101$

(13 – 14)

13. Let P contain r elements. The number of ways of selecting P is ${}^{n}C_{r}$. The common element can be selected in r ways. The remaining elements of Q can be selected in 2^{n-r} ways. So, total number of ways of selecting P and Q is $\sum_{r=1}^{n} {}^{n}C_{r} \times r \times 2^{n-r} = n \times 3^{n-1}$.

14. Let P contain r elements. The number of ways of selecting P is ⁿC_r.
 The number of ways of selecting Q is ⁿC_{r+1}. So, total number of ways of selecting P and Q is

$$\sum_{r=0}^{n-1} {}^{n}C_{r} \times {}^{n}C_{r+1} = {}^{2n}C_{n-1}.$$

Let $b_k = \frac{1}{a_k}$. $b_{1,b_2,b_3, ...}$ are in A.P. with $b_1 = \frac{1}{5}, b_{20} = \frac{1}{25}$ If d is the common difference of this A.P., then $19d == \frac{1}{25} - \frac{1}{5} = -\frac{4}{25}$ $d = -\frac{4}{475}$ $b_n = b_1 + (n-1)d = \frac{1}{5} - \frac{4(n-1)}{475} = \frac{99 - 4n}{475}$ $\Rightarrow a_n = \frac{475}{99 - 4n}$ Note that a_n is maximum if 99 - 4n > 0 and 99 - 4n is least, which happens when n = 24. Also, $a_n < 0$ if 99 - 4n < 0 $\Rightarrow n > \frac{99}{4} \Rightarrow n \ge 25$

FIITJEE Ltd., Punjabi Bagh Centre, 31-32-33, Central Market, West Avenue Road, Punjabi Bagh (West), New Delhi - 110026, Ph: 011-45634000

Thus, the least value of n for which $a_n < 0$ is 25.

PART – B

(Matrix Match Type)

Matrix	x Match (1 – 4)
1.	$a = -\left(\left x\right + \frac{1}{\left x\right }\right) \le -2$ for real x
2.	$ z_1 - z_2 ^2 = z_1 ^2 + z_2 ^2 - 2\operatorname{Re}(z_1\overline{z_2})$ or $AB^2 = OA^2 + OB^2 - 2\operatorname{Re}(z_1\overline{z_2}) \implies \operatorname{Re}(z_1\overline{z_2}) = -2$
3. (A)	Total number of ways of arranging the letters of the word INDIANOIL is $\frac{9!}{3!2!}$. Treating INDIAN as a single object, we can permute INDIAN, O, I and L in 4! ways. \therefore Probability of the required event $=\frac{4!3!2!}{9!}=\frac{1}{\binom{7}{C_3}\binom{9}{C_2}}$
(B)	We can permute OIL, I, N, D, I, A and N in $\frac{7!}{2!}$ ways. \therefore Probability of the required event $=\frac{2!2!3!2!}{7!9!}=\frac{1}{({}^{5}C_{2})({}^{7}C_{2})(9!)}$
(C)	Fixing an I at the first place and L at the last place, we can permute the remaining letters in $\frac{7!}{2!2!}$ ways. \therefore Probability of the required event $=\frac{2!2!3!2!}{7!9!}=\frac{1}{\binom{5}{C_2}\binom{7}{C_2}(9!)}$
(D)	Vowels can be arranged at odd places in $\frac{5!}{3!}$ ways. The remaining letters can be arranged at 4 even places in $\frac{4!}{2!}$ ways. \therefore Probability of the required event $=\frac{5!4!}{3!2!} \times \frac{3!2!}{9!} = \frac{1}{{}^9C_4} = \frac{1}{{}^9C_5}$
4. (A)	$z^{2} = - z $ $\Rightarrow z ^{2} = z \Rightarrow z = 0 \text{ or } z = 1$ If $ z = 0$, then $z = 0$ If $ z = 1$, then $z^{2} = -1 \Rightarrow z = \pm i$ $\therefore z^{2} + z = 0$ has 3 solutions.
(B)	If $z = a + ib$, $z^2 + \overline{z}^2 = 0$ gives $a = \pm b$ which is satisfied by each complex number of the form $a(1\pm i)$, where $a \in R$.
(C)	$ z^{2} = -8\overline{z} $ $\Rightarrow z ^{2} = 8 z \Rightarrow z = 0 \text{ or } z = 8$

FIITJEE Ltd., Punjabi Bagh Centre, 31-32-33, Central Market, West Avenue Road, Punjabi Bagh (West), New Delhi - 110026, Ph: 011-45634000

(D) The circles |z-2|=1 and |z-1|=2 touch each other internally. Thus, |z-2|=1 and |z-1|=2 have just one solution.

CS Α

 $A \rightarrow V_2$

 A_2

ÅR

 I_2

ALIS				
		(Single	Physics PART – A e Correct Choice Type)	
1. Sol.	B P120406 A moving conductor is equiv $= vB^{\ell}$ (motion emf)	alent to a	battery of emf	
	Equivalent circuit $I = I_1 + I_2$			J R
	Applying Kirchoff's law $I_1R + IR - vB\ell = 0$	(1)		\$
	$I_2R + IR - vB\ell = 0$ Adding (1) and (2)	(2)		
	$2IR + IR = 2vB\ell$ $I = \frac{2vB\ell}{3R} ; I_1 = I_2 = \frac{vB\ell}{3R}$			
2. Sol.	A P111027 $\rho_1 Vg - \rho_2 Vg = kv_T^2$			
	$\Rightarrow \qquad V_{T} = \sqrt{\frac{Vg(\rho_{1} - \rho_{2})}{k}}$			
3. So	C P112328 I. 2T T ¹ 31	г	$\sigma AT_{1}^{4} = \frac{\sigma A(2T)^{4}}{2} + \frac{\sigma A(3T)^{4}}{2}$	5T) ⁴
			$T_{1}^{4} = \frac{1}{2}(2T)^{4} + \frac{1}{2}(3T)^{4}$ $= (16+81)T^{4} = \frac{97}{2}T^{4}$	
			$T_1 = \left(\frac{97}{2}\right)^{\frac{1}{4}} T^4$	
4. Sol.	B P120414			
	$E2\pi\sqrt{x^2 + d^2} = \pi R^2 k$ $E = \frac{\pi R^2 k}{2\sqrt{x^2 - t^2}}$		$\begin{pmatrix} \times & \hat{R} \\ \times & \times \\ \times & & \ddots \\ \times & & & \ddots \\ \times & & & & & \\ \times & & & & & \\ \times & & & &$	×
	$W_{ext} = \int_{0}^{\infty} q\vec{E} \cdot dx = \frac{q\pi R^2}{4}k$	-	θ P	
5. Sol.	A P112314 $Q = Q_1 + Q_2$ n + n n n	3	E	
	$\frac{\gamma_{1} + \gamma_{2}}{\gamma_{m} - 1} = \frac{\gamma_{1}}{\gamma_{1} - 1} + \frac{\gamma_{2}}{\gamma_{2} - 1} ; \gamma_{m}$	$=\frac{0}{2}$		
6. Sol.	B P111009 From equation of continuity $A_1 V_1 = A_2 V_2$ $\frac{V_1}{V_2} = \frac{A_2}{A_1}$			<u>₹.</u> 72

Α P120302 7. Sol. The magnetic field in between because of each will be in opposite direction. $\mathsf{B}_{\mathsf{in \, between}} = \frac{\mu_{\mathsf{o}} i}{2\pi x} \, \hat{j} - \frac{\mu_{\mathsf{o}} i}{2\pi (2d - x)} \, (-\hat{j})$ $= \frac{\mu_{o}i}{2\pi} \left| \frac{1}{x} - \frac{1}{2d-x} \right| (-\hat{j})$ x = d, $B_{in between} = 0$ at x < d, $B_{in between} = (\hat{j})$ for x > d, $B_{in between} = (-\hat{j})$ for towards x net magnetic field will add up and direction will be $(-\hat{j})$ towards x' net magnetic field will add up and direction will be (\hat{j}) 8. P110912 Α $g = \frac{GM}{R^2} = \frac{G\frac{4\pi}{3}R^3\rho}{R^2} = \frac{4\pi G}{3}\rho R$ Sol. $\frac{\sqrt{6}}{11} = \frac{g_1}{g} = \frac{\rho_1 R_1}{\rho R} = \frac{2}{3} \frac{R_1}{R}$ $\frac{R_1}{R} = \frac{3\sqrt{6}}{22}$ $\frac{V_{1}}{V} = \sqrt{\frac{M_{1}}{M} \frac{R}{R_{1}}} = \sqrt{\frac{\rho_{1}}{\rho} \frac{R_{1}^{3}}{R_{1}} \frac{R}{R_{1}}} = \sqrt{\frac{2}{3} \left(\frac{3\sqrt{6}}{22}\right)^{2}} = \frac{3}{22} \sqrt{\frac{2}{3} \times 6}$ $v_1 = 11 \times \frac{3}{22} \times 2 = 3 \text{ kms}^{-1}$ Α P110903 9. 10. Α P110903 $T = 2\pi \sqrt{\frac{3}{4\pi G\lambda}} \Rightarrow \frac{T}{4} = \sqrt{\frac{3\pi}{16G\lambda}}$; $V = \omega A = (\sqrt{\pi G\lambda})r$ Sol. $N = \frac{4}{3}\pi G \times m\frac{r}{2}$ P111211 11. Α The compression is adiabatic Sol. $V_1 = \left(\frac{P_0}{P_1}\right)^{\frac{1}{\gamma}} V_0 = \frac{9V_0}{16}$ $\therefore P_0 V_0^{\gamma} = P_1 V_1^{\gamma}$, 12. P111211 Α $\frac{P_0V_0}{T_0} = \frac{P_1V_1}{T_1},$ $T_1 = \frac{4T_0}{3}$ Sol. 13. В P120305 14. В P120305

2.	$A \rightarrow P$	$B \rightarrow P$	$C \rightarrow Q$	$D\toS$	P111203
Sol.	$mg = \frac{v}{2} \rho_{L} g$,		$v \rho_s g = \frac{v}{2} \rho_L g$, $\rho_s =$	$\frac{\rho_{L}}{2}$	
	$mg = v' \rho_L g$, when temperature is From (i) and (ii) $A\rho_L$	raised by ΔT , = A' ρ'_L	$mg = Ax\rho_Lg \qquad \dots (i)$ $mg = A'x\rho'_Lg \qquad \dots (ii)$)	
	$A\rho_{L} = A\left(1 + 2\alpha_{s}\Delta T\right)$	$\frac{\rho_L}{1 + \gamma_L \Delta T}$			
	$\gamma_{\text{L}}=2\alpha_{\text{s}}$ for fraction	inside the liquid to be	e same $\frac{\rho_s}{\rho_L} = \frac{\rho'_s}{\rho'_L}$		
			$\frac{\rho_{s}}{\rho_{L}} = \frac{\rho_{s} \left(1 + \gamma_{L} \Delta T\right)}{\rho_{L} \left(1 + 3\alpha_{s} \Delta T\right)} $	$\rho_{\text{L}}=3\alpha_{\text{s}}$	
3.	$A \rightarrow S$	$B \rightarrow R$	$C \rightarrow S$	$D \to Q$	P111030
Sol.	Excess pressure in b	bubble = $\frac{4T}{R}$.			
	Excess pressure in c	$\operatorname{drop} = \frac{2T}{R}.$			
4.	$A \rightarrow QS$	$B \rightarrow PS$	$C \rightarrow QR$	$S \rightarrow R$	P120404
Sol.	At t = 1s, $\frac{d\phi}{dt} = 5$	∴ i = – 0.5 A			
	Similarly at $t = 7 s$,	$\frac{d\phi}{dt} = -5 , \qquad i = 0$.5A		
	Also, $E2\pi r = 5$,	$E \times \frac{27}{7} \times \frac{7}{44} = 5 \; ,$	E = 5N/C		