SOLUTIONS

CHEMISTRY

2. In the $8^{\text {th }}$ period, the electrons will be filled in
$8 \mathrm{~s}, 8 \mathrm{p}, 7 \mathrm{~d}, 6 \mathrm{f}$ and 5 g orbitals (as per Aufbau rule)
So, total number of elements $=75$.
3.

4. Meq. of $\mathrm{Cu}=$ Meq. of $\mathrm{I}_{2}=$ Meq. of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
$=20 \times 0.5=10$

Meq. of Cu in $20 \mathrm{ml}=10$

Meq. of Cu in $1000 \mathrm{ml}=500$
Wt. of $\mathrm{Cu}=\frac{500 \times 63.5}{1000}=31.75$

$$
2 \mathrm{CuSO}_{4}+4 \mathrm{KI} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2}\left(\mathrm{n}_{\mathrm{f}} \text { of } \mathrm{Cu}=1\right)
$$

$\% \mathrm{Cu}=\frac{31.75}{50} \times 100=63.5$
5. Diameter of bubble at the bottom $=3.6 \mathrm{~mm}$

Volume of bubble at the bottom $\mathrm{V}_{\mathrm{b}}=\frac{4}{3} \pi\left(\frac{3.6}{2}\right)^{3}$

Volume of bubble at the surface $\mathrm{V}_{\mathrm{s}}=\frac{4}{3} \pi\left(\frac{4.0}{2}\right)^{3}$
$\frac{V_{b}}{V_{s}}=\left(\frac{3.6}{4.0}\right)^{3}=0.729$

Now, at the surface pressure is only due to atmospheric pressure, i.e. $P_{s}=76 \mathrm{~cm}, T_{s}=273+40=313 \mathrm{~K}$ In the bottom pressure is due to atmospheric pressure + water in the lake, i.e.

$$
\begin{aligned}
& P_{b}=1+\frac{250 \times 980}{1.01 \times 10^{6}}=0.24+1=1.24 \mathrm{~atm} \\
& \frac{P_{s} V_{s}}{T_{s}}=\frac{P_{b} V_{b}}{T_{b}} \Rightarrow T_{b}=\frac{P_{b} V_{b} T_{s}}{P_{s} V_{s}}=283.36 \mathrm{~K} \\
& =10.36^{\circ} \mathrm{C}
\end{aligned}
$$

6. The bicarbonate ions tend to be held together in crystal structures by hydrogen bonding giving layers of polymeric anions. The potassium salt, contains a dimeric anion (shown below).

In sodium salt, however, the bicarbonate anions form an infinite chain (shown below)

(Structure of NaHCO_{3})

Hence, (C).
7.

8. Baeyer-Villiger oxidation.
11. Less is the steric hindrance, higher is the rate of $\mathrm{S}_{N} 2$ reaction.
12. More stable the carbocation and better leaving group ability favours $S_{N} 1$ reaction.
13. More the number of alkyl substitute at double bond, greater its thermodynamic stability.
14. $\mathrm{C}-\mathrm{H}$ bond is broken in non rate determining step, therefore, substitution of $\alpha-\mathrm{H}$ by deuterium doesn't affect the rate of reaction.
15. For a given pressure, Z is minimum for CO_{2}. Therefore CO_{2} can be easily liquefied.

1. $\mathrm{SnCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{SnO}+2 \mathrm{NaCl}+\mathrm{CO}_{2}$
$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{S}$
$\mathrm{SnO}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SnO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

MATHEMATICS

1. Hint: $S+\lambda L=0$ is the equation of family of circles through Q and R.

Solution : Given circle is $x^{2}+y^{2}=4$
$Q R$ is the chord of $P(-3,4)$ w.r.t. circle
\therefore Equation of $Q R$ is $x(-3)+4(y)-4=0$
$\Rightarrow-3 x+4 y-4=0$
\therefore Equation of family of circles through the intersection of (1) and (2) is $\left(x^{2}+y^{2}-4\right)+\lambda(-3 x+4 y-4)=0$ this passes through $P(-3,4)$
$(9+16-4)+\lambda(9+16-4)=0$
$\Rightarrow 21+21 \lambda=0 \quad \Rightarrow \lambda=-1$
\therefore Equation of circumcircle of $\triangle \mathrm{PQR}$ is $\left(\mathrm{x}^{2}+\mathrm{y}^{2}-4\right)-1(-3 \mathrm{x}+4 \mathrm{y}-4)=0$
$\Rightarrow x^{2}+y^{2}+3 x-4 y=0$
2. Hint : On substituting the points in the given line we should get opposite sign

Solution : Let $f(x, y)=x+y+1, f(3,-2)=3-2+1=>0$
$f\left(a^{2}, a\right)=a^{2}+a+1<0$

This quadratic will have complex roots $\mathrm{a}^{2}+\mathrm{a}+1$ will always be positive $\because \Delta<0 \therefore$ the two parts will never be on opposite
3. Hint : Equation of the chord with midpoint (x, y) is $T=S_{1}$.

Solution : $y-3 x+3=0$
$\mathrm{T}=\mathrm{S}_{1}$
$y y_{1}-2\left(x+x_{1}\right)=y_{1}^{2}-4 x_{1}$.
$y y_{1}-2 x-y_{1}^{2}+2 x_{1}=0$
(1) and (2) represent the same line.
$\frac{y_{1}}{1}=\frac{-2}{-2}=\frac{2 x_{1}-y_{1}^{2}}{3}$
$y_{1}=1, \quad 2 x_{1}-y_{1}^{2}=3$
$2 x_{1}-1=3$
$x_{1}=2$
$\left(x_{1}, y_{1}\right)=(2,1)$.
4. Hint: Use Homogenization method.

Solution: Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be the point.

Then equation of chord of contact of P w.r.t. ellipse $x^{2}+2 y^{2}=1$

is $x h+2 y k=1$
Then the joint equation of lines joining origin to points of intersection of (1) and (2) is
$x^{2}+2 y^{2}=(x h+2 y k)^{2}$ [making (1) homogenous with the help of 2$\left.)\right]$

The lines will be perpendicular if
$\left(1-h^{2}\right)+\left(2-4 k^{2}\right)=0$
$\Rightarrow \mathrm{h}^{2}+4 \mathrm{k}^{2}=3$
\therefore Required locus is $\mathrm{x}^{2}+4 \mathrm{y}^{2}=3$
5. $f(x)=\frac{x^{2}+3 x+8}{x^{2}+6 x+29}$
$=\frac{x^{2}+6 x+29-3 x-21}{x^{2}+6 x+29}$
$=1-\frac{3(x+7)}{x^{2}+6 x+29}$
$=1-\frac{3(x+7)}{(x+3)^{2}+20}$
$f(x)$ is not one-one
$\mathrm{f}(\mathrm{x})$ is continuous:
domain of function is the set of real number
8. $\quad a \sin x+2 \cos \left(x+\frac{\pi}{3}\right)$
$=\operatorname{asin} x+2\left[\cos x \cos \frac{\pi}{3}-\sin x \sin \frac{\pi}{3}\right]=\operatorname{asin} x+2\left[\cos \frac{1}{2}-\sin x \frac{\sqrt{3}}{2}\right]$
$=(a-\sqrt{3}) \sin x+\cos x$
maximum value $\sqrt{(a-\sqrt{3})^{2}+1^{2}}=1$
$(a-\sqrt{3})^{2}+1=1$
$a=\sqrt{3}$
9. Equation of the tangent is
$\frac{x}{a} \sec \theta-\frac{y}{b} \tan \theta=1$
normal is $a x \cos \theta+$ by $\cot \theta=a^{2}+b^{2}$.
The normal at P meets the co-ordinate axes at $G\left(\frac{a^{2}+b^{2}}{a} \sec \theta, 0\right)$ and $g\left(0, \frac{a^{2}+b^{2}}{a} \tan \theta\right)$
$\therefore \mathrm{PG}^{2}=\left(\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}} \sec \theta-\mathrm{a} \sec \theta\right)^{2}+(\mathrm{b} \tan \theta-0)^{2}$
$P G^{2}=\frac{b^{2}}{a^{2}}\left(b^{2} \sec ^{2} \theta+a^{2} \tan ^{2} \theta\right)$.
10. When $\tan \theta=0$
$P G=\frac{b^{2}}{a}$.

11-12. Since the perpendicular bisectors of $A D$ and $B C$ become same line $x=1$
$\Rightarrow x=1$ is the axis of the parabola
\Rightarrow equation of the parabola is $y=a x^{2}-2 a x+c$.
$(-1,3),(0,1)$ lies on it $\Rightarrow c=1$ and $a=\frac{2}{3}$
the parabola is $y=\frac{2}{3} x^{2}-\frac{4}{3} x+1 \Rightarrow$ vertex is $\left(1, \frac{1}{3}\right)$
directrix is $y+\frac{1}{4}=0$.
Slope of the line $A B$ is $1 \Rightarrow t_{3}=-1$
where t_{3} is the point co-normal with A and B
\Rightarrow the point of intersection of circles is $(4,-4)$.

13-14. $36\{x\}^{2}=6 x[x]=6([x]+\{x\})[x]$
$\Rightarrow(3\{x\}+[x])(2\{x\}-[x])=0$
$\therefore\{x\}=\frac{[x]}{2} \because 2\{x\}+[x] \neq 0$
$\therefore 0 \leq \frac{[\mathrm{x}]}{2}<1 \Rightarrow[\mathrm{x}]=1$
$\therefore\{x\}=\frac{1}{2}$ so $x=\frac{3}{2}$
\therefore Terms are 3, 3,3 .
15. $x^{2}-2 x+a=x-1, x>1$
$x^{2}-2 x+a+x-1=0, x<1$
$\Rightarrow x^{2}-3 x+a+1=0$
$x^{2}-x+a-1=0$
$\Delta>0$
$\Delta>0$
$a>4(a+1)$
$1>4(a-1)$
$\Rightarrow \mathrm{a}<5 / 4$
$a<5 / 4$
$1 \cdot f(1)>0$
$1 \cdot f(1)<0$
$a>1$
$a>1$
$\Rightarrow a \in(1,5 / 4)$
16. Three roots occur when the above set of equations has a root $x=1$ as common root. i.e. when $\mathrm{a}=1$.

1. $\quad C_{1} C_{2}<r_{1}+r_{2} \Rightarrow$ circles are intersecting
\Rightarrow two common tangents equation of common chord $6 x-9=0 \Rightarrow x=\frac{3}{2}$
length of common chord $=2 \sqrt{9-\frac{9}{4}}=3 \sqrt{3}$
length of common tangent $=\sqrt{\left(C_{1} C_{2}\right)^{2}-\left(r_{1}-r_{2}\right)^{2}}=3$.

Required greatest distance $=C_{1} C_{2}+r_{1}+r_{2}=9$.
2. (C) The point $(6,8)$ divides the line segment joining $(2,4)$ and $(8,10)$ in the ratio $2: 1$ internaly.

The harmonic conjugate of $(6,8)$ divides the line segment joining $(2,4)$ and $(8,10)$ in the ratio $2: 1$ externally.
\therefore the point is $(14,16)$
(D) Let θ be the angle of which line segment $A B$ taken in the direction from A to B makes with the positive direction of x-axis then
$\cos \theta=\frac{1}{\sqrt{2}}$ and $\sin \theta=-\frac{1}{\sqrt{2}}$

Let the coordinates of the new positions of B be (x, y) then

$$
\begin{aligned}
& \frac{x-2}{4 \sqrt{2}}=\cos \left(\theta-90^{\circ}\right)=\sin \theta=-\frac{1}{\sqrt{2}} \\
& \therefore x=-2 \text { and } \frac{y-4}{4 \sqrt{2}}=\sin \left(\theta-90^{\circ}\right)=-\cos \theta=-\frac{1}{\sqrt{2}} \\
& \therefore y=0
\end{aligned}
$$

3(A) $\quad f(x)=(x+1)|x-1|= \begin{cases}x^{2}-1, & x \geq 1 \\ 1-x^{2}, & x<1\end{cases}$

(B) $\quad f(x)=\min \{|x|, 1-|x|\}$

(C) $\quad f(x)=\{x\}+2[x]=x+[x]$
at $x=1$,
$L H L=I+(I-1)=2 I-1$
$R H L=I+I=2 I=f(1)$
\therefore Not continuous hence not differentiable at integral points but increasing
(D)

$$
\mathrm{f}(\mathrm{x})=\sqrt{\cos ^{2} \frac{\pi \mathrm{x}}{2}}=\left|\cos \frac{\pi \mathrm{x}}{2}\right|
$$

4. $f(x)= \begin{cases}{[x],} & -2 \leq x<0 \\ |x|, & 0 \leq x \leq 2\end{cases}$
$\Rightarrow f(x)= \begin{cases}-2, & -2 \leq x<1 \\ -1, & -1 \leq x<0 \\ x, & 0 \leq x \leq 2\end{cases}$
$g(x)=\sec x, \quad x \in R-(2 n+1) \frac{\pi}{2}$

fog $= \begin{cases}-2, & -2 \leq \sec x<-1 \\ -1, & -1 \leq \sec x<0 \\ \sec x, & 0 \leq \sec x \leq 2\end{cases}$
$\therefore f \circ \mathrm{fog}= \begin{cases}-2, & x \in\left[-\frac{4 \pi}{3},-\frac{2 \pi}{3}\right] \cup\left[\frac{2 \pi}{3}, \frac{4 \pi}{3}\right]-\{-\pi, \pi\} \\ -1, & x=-\pi, \pi \\ \sec x, & x \in\left[-\frac{\pi}{3}, \frac{\pi}{3}\right]\end{cases}$
limit of fog exist at $x=-\pi, \pi,-1$, points of discontinuity of fog are $-\pi, \pi$
points of differentiability of fog are $-1, \frac{5 \pi}{6}$.
$\operatorname{gof}= \begin{cases}\sec (-2), & x \in[-2,-1)-\left\{-\frac{\pi}{2}\right\} \\ \sec (-1), & x \in[-1,0) \\ \sec x & x \in[0,2]-\left\{\frac{\pi}{2}\right\}\end{cases}$
limit of gof does not exist at $\mathrm{x}=-1$.

PHYSICS

2. $\mathrm{mg} \sin \theta-\mathrm{T}=\mathrm{ma}$
$\mathrm{T}=\mathrm{ma}$
3. $y=\frac{C}{6} t^{6} \Rightarrow v=\frac{d y}{d t}=C t^{5}$
$a=\frac{d v}{d t}=5 \mathrm{Ct}^{4}$
$\frac{a}{v}=\frac{5}{t}$

So, at $t=5 \mathrm{sec}, \frac{a}{v}=1 \Rightarrow a=v$
4. $\mathrm{v}_{x}=\mathrm{u}_{x}+\mathrm{a}_{x} \mathrm{t}$
$v_{x}=0+g t$
$v_{y}=u_{y}+a_{y} t$
$0=u-g t$
$t=\frac{u}{g}$

By (1) and (2) we get
$\mathrm{v}_{\mathrm{x}}=\mathrm{u}$ and $\mathrm{v}_{\mathrm{y}}=0$

Hence net velocity $=u$
5. Conceptual.
6. $E_{i}=\frac{k(2 Q)}{(2 R)^{2}}-\frac{k(Q)}{(4 R)^{2}}=\frac{7 k Q}{16 R^{2}}$
7. Circuit is forming a wheatstone bridge $R_{\text {eq }}=2 R$

For maximum power transfer $2 R=r$.

13. Apply KVL in ABEFA and BCEDB to get
$Q=\frac{V C}{2}\left(1-e^{-2 t / 3 R C}\right)$

14. To calculate current in ED find dQ/dt

$$
\frac{d Q}{d t}=\frac{V C}{2} \times \frac{2}{3 R C} e^{-2 t / 3 R C}=\frac{V}{3 R} e^{-2 t / 3 R C}
$$

15. $q_{1}+q_{2}=0$
$v_{A}=\frac{k q_{1}}{R}+\frac{k Q}{2 R}+\frac{k q_{2}}{4 R}$
$v_{c}=\frac{k q_{1}}{4 R}+\frac{k Q}{4 R}+\frac{k q_{2}}{4 R}$

$\mathrm{v}_{\mathrm{A}}=\mathrm{v}_{\mathrm{C}}$
$\Rightarrow q_{1}=-Q / 3$ and $q_{2}=Q / 3$
16. $\quad v_{A}=k\left[\frac{-Q}{3 R}+\frac{Q}{2 R}+\frac{Q}{12 R}\right]=\frac{Q}{16 \pi \varepsilon_{0} R}$
17. $i=a-\frac{b t}{2}+\frac{c t^{2}}{3}$
