HINTS \& SOLUTONS

CHEMISTRY

1. In diamond, one carbon atom is attached to four carbon atoms tetrahedrally
2. NaCO_{3} is strong base than $\mathrm{NaHCO}_{3} . \mathrm{NaCl}$ is natural salt, while HCl is an acid.
3. HCl is stronger acid than oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ since oxalic acid is an organic acid. So HCl will donate H^{+}ion, while $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ will accept H^{+}ion and so conjugate acid of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is $\mathrm{H}_{3} \mathrm{C}_{2} \mathrm{O}_{4}^{+}$
4. Marble consists of CaCO_{3}. Gypsum is $\mathrm{CaSO}_{4} .2 \mathrm{H}_{2} \mathrm{O}$
5. The reaction in which same element from same molecule will oxidised as well as reduced is called disproportionation. P_{4} oxidised to $\mathrm{NaH}_{2} \mathrm{PO}_{2}$ and P_{4} reduced to PH_{3}
6. Lithium has lowest density in alkali metal group.
7. $\mathrm{K}_{2} \mathrm{CO}_{3}$ is soluble in $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ is thermally stable compound.
8. Alkali and alkaline earth metals are highly reactive, they react with carbon to form carbide i.e. they reduce carbon.
9. Ag and Au forms solution complex with NaCN , while impurities do not.
Q. No. 10-12
$\mathrm{CaCO}_{3} \xrightarrow{\Delta} \mathrm{CaO}+\mathrm{CO}_{2}$
$\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \longrightarrow \mathrm{CaCl}_{2}+\underset{\mathrm{D}}{2 \mathrm{NH}_{3}}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{4} \mathrm{OH}$
$\mathrm{NH}_{4} \mathrm{OH}+\mathrm{CO}_{2} \longrightarrow \mathrm{NH}_{4} \mathrm{HCO}_{3}$
$\mathrm{NH}_{4} \mathrm{HCO}_{3}+\mathrm{NaCl} \longrightarrow \mathrm{NaHCO}_{\mathrm{G}} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
10. Anodising produces protective layer of $\mathrm{Al}_{2} \mathrm{O}_{3}$ on surface of aluminium to protect it from corrosion
11. Metal oxide with why high melting point are reduced by thermite process.
12. Thermite mixture contains $\rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{Al}$
13. Fact
14. Fact

MATHEMATICS

1. A

Sol. $\quad \frac{a}{b}=\frac{\log _{10} 25}{\log _{10} 36}=\log _{36} 25$
$\Rightarrow \frac{a}{b}=\log _{6} 5$
$\Rightarrow \frac{b}{a}=\log _{5} 6$
$\Rightarrow 6^{a / b}=6^{\log _{6} 5} \quad 5^{b / a}=5^{\log _{5} 6}$
$\Rightarrow 6^{a / b}=5$
$\Rightarrow 6^{a / b}+5^{b / a}=5+6=11$
2. (C)
$f(x)=150\left(6 x^{2}+x-1\right)(x-3)^{3}=2 \times 3 \times 5^{2}(2 x+1)(3 x-1)(x-3)^{3}$.

$$
\begin{aligned}
& 9(x)=84(x-3)^{2}\left(8 x^{2}+6 x+1\right)=22 \times 3 \times 7(x-3)^{2}(2 x+1)(4 x+1) . \\
& H C F=2 \times 3(2 x+1)(x-3)^{2} . \\
& \therefore \text { exponent of }(2 x+1) \text { is } 1 .
\end{aligned}
$$

3. (C)

Hint : $\tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{OB}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{75 \mathrm{~m}}{\mathrm{OB}}$
$\Rightarrow \mathrm{OB}=75 \sqrt{3} \mathrm{~m}$

4. (D)

Sol.

$$
\begin{aligned}
x^{2} & =p^{2}-q^{2} \\
& =(p-q)(p+q) \\
x & =\sqrt{p+q} \\
& =\sqrt{2 q+1}
\end{aligned}
$$

5. (D)

Sol. In $\triangle A C B$,

$$
\tan 30^{\circ}=\frac{h}{150+C D}
$$

In \triangle DCB,

$$
\tan 60^{\circ}=\frac{h}{C D}
$$

$\Rightarrow \quad C D=\frac{h}{\sqrt{3}}$
i.e.

$$
\begin{aligned}
\frac{1}{\sqrt{3}} & =\frac{h}{150+\frac{h}{\sqrt{3}}} \\
\sqrt{3} h & =150+\frac{h}{\sqrt{3}} \Rightarrow h=75 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

6. (C)

Sol. $\sqrt{3} \operatorname{cosec} 20-\operatorname{Sec} 20$
$\Rightarrow \tan 60 \operatorname{cosec} 20-\sec 20$
$=\frac{\sin (60-20)}{\frac{1}{4}^{\circ} 2 \sin 20 \cos 20}=\frac{4 \sin 40}{\sin 40}=4$
7. (D)
8. (D)
9. (A)
10. Area of a triangle $=r \times s$

$$
\sqrt{s(s-a)(s-b)(s-c)}=4 \times 3 n
$$

Solving we get $\mathrm{n}=7$
Sides are $B C=13, A C=15, A B=14$.
11. $\angle \mathrm{DFE}=\frac{\angle \mathrm{A}+\angle \mathrm{B}}{2}=\frac{\pi-\angle \mathrm{C}}{2}$

Similarly $\angle \mathrm{DEF}=\frac{\pi-\angle \mathrm{B}}{2}$
$\angle \mathrm{EDF}=\left(\frac{\pi-\angle \mathrm{A}}{2}\right)$
12. $\cot \left(\frac{\mathrm{A}}{2}\right)=\frac{8}{4}$
$\cot \left(\frac{B}{2}\right)=\frac{6}{4}$
$\cot \left(\frac{\mathrm{C}}{2}\right)=\frac{7}{4}$
13. (A)

Sol. In $\triangle A B C, A D$ is the bisector of C is
$\frac{B D}{D C}=\frac{A B}{A C}$
$\Rightarrow \frac{4}{3}=\frac{6}{\mathrm{AC}}$
$\mathrm{AC}=4.5$
14. (B)

Sol. Let $B D=x \mathrm{~cm}$, then $\mathrm{DC}=(6-\mathrm{x})$ can since $A D$ is the bisector of $<n$
$\frac{A B}{A C}=\frac{B D}{D C}$
$\Rightarrow \frac{10}{14}=\frac{x}{6-x}$
$x=2.5$
15. (D)

Sol. $\quad A E$ is the bisector of $\angle C A D$
$\frac{A B}{A C}=\frac{B E}{C E}=\frac{10}{6}=\frac{12+x}{x}$
$10 x=72+6 x \Rightarrow x=18$

PART-B

1. $A-q ; B-p, s ; C-p ; D-p, r$
(A) $2^{\log _{2 \sqrt{2}} 15}=2^{\frac{2}{3} \log _{2} 15}=(15)^{\frac{2}{3}}=$ irrational
(B) $\sqrt[3]{5^{\frac{1}{\log _{7} 5}}+\frac{1}{\sqrt{-\log _{10} 0.1}}}=\sqrt[3]{8}=2$ = rational \& prime
(C) $\frac{\log 5}{\log 3} \times \frac{3 \log 3}{2 \log 5}=\frac{3}{2}=$ rational
(D) $\left(\log _{10} x\right)^{2}=2+\log _{10} x$

Let $\log _{10} \mathrm{x}=\mathrm{t}$
$\Rightarrow \mathrm{t}^{2}-\mathrm{t}-2=0 \Rightarrow \mathrm{t}=2$ or $\mathrm{t}=-1$
$\therefore \mathrm{x}=100$ or $\mathrm{x}=\frac{1}{10}$
\therefore Product of roots $=10$.
2. A-S ; B-P;C-Q;D-R

Sol. (A) $\operatorname{cosec} 2 \theta+\cot 2 \theta \cos 2 \theta=\frac{1+\cos ^{2} 2 \theta}{\sin 2 \theta}=\frac{2-\sin ^{2} 2 \theta}{\sin 2 \theta}=\frac{2-K^{2}}{K}$
(B) $\left(\frac{1+\tan \theta}{1-\tan \theta}\right)^{2}=\frac{1+\sin 2 \theta}{1-\sin 2 \theta}=\frac{1+k}{1-k}$
(C) $\sin 2 \theta-\frac{1}{2}(1+\cos 4 \theta)=\sin 2 \theta-\cos ^{2} 2 \theta=k^{2}+k-1$
(D) $\sin 6 \theta=3 \sin 2 \theta-4 \sin ^{3} 2 \theta=3 \mathrm{k}-4 \mathrm{k}^{3}$

PHYSICS

1. D

Equivalent resistance of the circuit $R=9 \Omega$
\therefore Main current $i=\frac{V}{R}=\frac{9}{9}=1 \mathrm{~A}$

After proper distribution, the current through 4Ω resistance is 0.25 A .
2. A

In the following figure, magnetic fields at O due to sections $1,2,3$ and 4 are considered as B_{1}, B_{2}, B_{3} and B_{4} respectively.
$B_{1}=B_{3}=0$
$B_{2}=\frac{\mu_{0}}{4 \pi} \cdot \frac{\pi i}{R_{1}} \otimes$
$B_{4}=\frac{\mu_{0}}{4 \pi} \cdot \frac{\pi i}{R_{2}} \odot \quad$ As $\left|B_{2}\right|>\left|B_{4}\right|$

So $B_{\text {net }}=B_{2}-B_{4} \Rightarrow B_{\text {net }}=\frac{\mu_{0} i}{4}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \otimes$
3. B
$r=\frac{m v}{q B} \Rightarrow r \propto m v \quad(q$ and B are constant)
$\because r_{A}>r_{B} \Rightarrow m_{A} v_{A}>m_{B} v_{B}$
4. C
$\because r_{1}<r_{2}$
So $F_{1}>F_{2}$
$\Rightarrow F_{\text {net }}=\left(F_{1}-F_{2}\right)$ towards the wire.

5. D

When loop enters in field between the pole pieces, flux linked with the coil first increases (constantly) so a constant emf induces, when coil entered completely within the field, no flux change so $e=0$. When coil exit out, flux linked with the coil decreases, hence again emf induces, but in opposite direction.

Induced emf $e=A \frac{d B}{d t}$
i.e. $e \propto \frac{d B}{d t}$ (= slope of $B-t$ graph $)$

In the given graph slope of $A B>$ slope of $C D$, slope in the 'a' region $=$ slope in the ' c ' region $=0$, slope in the ' d 'region $=$ slope in the 'e' region $\neq 0$. That's why $b>(d=e)>(a=c)$
7. A

As filament of bulb and line wire are in series, hence current through both is same. Now, because $H=\frac{i^{2} R t}{4.2}$ and resistance of the filament of the bulb is much higher than that of line wires, hence heat produced in the filament is much higher than that in line wires.
8. A

The force on a charged particle moving in a uniform magnetic field always acts in direction perpendicular to the direction of motion of the charge. As work done by magnetic field on the charge is zero, [$W=F S \cos \theta$], so the energy of the charged particle does not change.
9. D

When switch S is closed, bulb C is short circuited, so voltage V distributes only in two parts i.e. voltage on Bulb A and B increases as compared previously. Hence illumination of Bulb A and B increases.
10. B
11. C
12. C

Sol. 10 \& 11
In magnetic field
$R=\frac{m v}{q B}=1 m$
$\mathrm{T}=\frac{2 \pi \mathrm{~m}}{\mathrm{qB}}=0.2 \pi$
In electric field
Acceleration $a=\frac{q E}{m}=10 \mathrm{~m} / \mathrm{s}^{2}$

Now, PA' $=$ maximum height $=\frac{\mathrm{v}^{2} \sin ^{2} \theta}{2 \mathrm{a}}=3.75 \mathrm{~m}$
$\therefore y$-co-ordinate of A^{\prime} is 4.25 m
$\mathrm{T}^{\prime}=$ time elapsed in $\overrightarrow{\mathrm{E}}$ is half the time of flight $=\frac{\mathrm{v} \sin \theta}{\mathrm{a}}=\frac{\sqrt{3}}{2}$
$\therefore \quad$ time $t=\frac{\mathrm{T}}{6}+\mathrm{T}^{\prime}=0.97 \mathrm{sec}$
12. Here the proton has no acceleration so $E=B=0$.

When $E=0$ but $B \neq 0$, but parallel to the motion of proton, there will be no force acting.
When $E \neq 0$ and $B \neq 0$ and E, B and motion of proton (v)are mutually perpendicular, there may be no net force. Forces due to E and B cancel each other.
13. C

$$
F=q(v \times B) \text { or }|F|=q v B \sin \theta
$$

F will be maximum. when $\theta=90^{\circ}$
14. D

$$
R=\frac{m v}{q B}=50 \mathrm{~cm}
$$

$$
\begin{aligned}
& \sin \theta=\frac{30}{50} \Rightarrow \theta=370 \\
& \Delta x_{1}=R(1-\cos \theta)=0.1 \mathrm{~m}
\end{aligned}
$$

15. D
16. $\mathrm{A}-\mathrm{R} ; \mathrm{B}-\mathrm{P} ; \mathrm{C}-\mathrm{S} ; \mathrm{D}-\mathrm{Q}$
(A) Initially an electric force acts on particle and after entering in magnetic field, a magnetic force acts on particle. So correct option is (R)
(B) Electric and magnetic force acts on particle at 90° to each other so motion of particle is parabola.
(C) Magnetic and electric force act perpendicular to velocity of particle, so motion is parabolic
(D) Motion of particle is helical.
17. A-P; B-S; C-P; D-Q
$P=\frac{v^{2}}{R} \Rightarrow R_{4}<R_{3}=R_{1}<R_{2}$
