flITJ $\boldsymbol{\epsilon}$ FARIDABAD MOCK PRACTICE PAPER FOR JEE -AIVAHGE-2020 MOCK PRACTICE PAPER-13

INSTRUCTIONS

Caution: Question Paper CODE as given above MUST be correctly marked in the answer OMR sheet before attempting the paper. Wrong CODE or no CODE will give wrong results.

A. General Instructions

1. Attempt ALL the questions. Answers have to be marked on the OMR sheets.
2. This question paper contains Three Parts.
3. Part-1 is Chemistry, Part-2 is Physics and Part-3 is Mathematics.
4. Rough spaces are provided for rough work inside the question paper. No additional sheets will be provided for rough work.
5. Blank Papers, clip boards, log tables, slide rule, calculator, cellular phones, pagers and electronic devices, in any form, are not allowed.

B. Filling of OMR Sheet

1. Ensure matching of OMR sheet with the Question paper before you start marking your answers on OMR sheet.
2. On the OMR sheet, darken the appropriate bubble with HB pencil for each character of your Enrolment No. and write in ink your Name, Test Centre and other details at the designated places.
3. OMR sheet contains alphabets, numerals \& special characters for marking answers.
C. Marking Scheme For All Sections.
(i) Section-A (01 - 8) contains 8 multiple choice questions which have only one correct answer. Each question carries $\mathbf{+ 3}$ marks for correct answer and $\mathbf{- 1}$ for incorrect answer.
(ii) Section-A (09-12) contains 4 multiple choice questions which have one or more than one correct answers. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 2}$ for incorrect answer.
(iii) Section-C ($\mathbf{0 1} \mathbf{- 6)}$) contains 6 questions. The answer to each question is a single -digit integer, ranging from 0 to 9 (both inclusive). Each question you will be awarded $+\mathbf{4}$ marks for correct answer and No negative marking in this section.
(iv) Section-B(01-02) contains 2 matrix match type questions. You will award 2 marks for each row matching. Thus, each question carries a maximum of +8 marks for correct answer and No negative marking in this section.

Name of the Candidate : \qquad
Batch : \qquad Date of Examination : \qquad

Enrolment Number :

\qquad

SECTION-1

(SINGLE CORRECT CHOICE TYPE)
Section-I (Single Correct Answer Type, Total Marks: 24) contains 8 mltiple dnoice questions Each questionhasfour dmices (A), (B), (C) and (D) out of which ONLY ONE is correct
1.
A)

B)

C)

D)

2. The reaction between diene and dienophile, (Diels Alder reaction) which occurs at a faster rate in comparison to others is
A)

B)

C)

D) $\mathbf{c H o}$
3. The Hinsberg test of a $\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{~N}_{2}$ compound produces a solid that is insoluble in 10% aq. NaOH . This solid derivative dissolves in 10% aq. sulfuric acid. Which of the following would best fit these facts
A) $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$
B) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NHCH}_{3}$
C) $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
D) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$
4. For the gaseous reversible conversion of ethylene to ethane at $25^{\circ} \mathrm{C} \ln \mathrm{K}$ is found to be 17.85. Standard Gibb's free energy change in $\mathrm{kJ} \mathrm{mol}^{-1}$ will be
A) -0.436
B) -3.71
C) -19.2
D) -44.2
5. A compound $\mathrm{A}_{3} \mathrm{~B}_{4(\mathrm{~g})}$ dissociates as $\mathrm{A}_{3} \mathrm{~B}_{4(\mathrm{~g})} \rightleftharpoons 2 \mathrm{AB}_{(\mathrm{g})}+\mathrm{A}_{(\mathrm{g})}+2 \mathrm{~B}_{(\mathrm{g})}$ with degree of dissociation α_{s} which is negligible in comparison to unity. Expression of α in terms of K_{P} and total pressure P is
A) $\sqrt[5]{\frac{\mathrm{K}_{\mathrm{P}}}{16 \mathrm{P}^{4}}}$
B) $\sqrt[5]{\frac{16 \mathrm{~K}_{\mathrm{P}}}{\mathrm{P}^{4}}}$
C) $\sqrt[5]{\frac{\mathrm{K}_{\mathrm{P}}}{\mathrm{P}^{4}}}$
D) $\sqrt[3]{\frac{\mathrm{K}_{\mathrm{P}}}{\mathrm{P}^{3}}}$
6. In $\mathrm{Na}_{2} \mathrm{O}$ structure,
A) Cations from CCP and anions occupy octahedral voids
B) Anions from CCP and cations occupy tetrahedral voids
C) Cations from CCP and anions occupy tetrahedral voids
D) anions form CCP and cations occupy octahedral voids.
7. Which of the following statements is correct for the species $\mathrm{H}_{2}^{+}, \mathrm{H}_{2}, \mathrm{He}_{2}^{+}$and He_{2} ?
A) He_{2}^{+}is more stable than H_{2}^{+}
B) Bond dissociation energy of H_{2}^{+}is more than Bond dissociation energy of He_{2}^{+}
C) Since bond order of He_{2}^{+}and H_{2}^{+}are equal both will have equal bond dissociation energies
D) Bond length of H_{2}^{+}is less than bond length of H_{2}
8. Which of the following order is incorrect for the indicated property?
A) $\mathrm{NaF}>\mathrm{KF}>\mathrm{RbF}>\mathrm{CsF}$ (melting point)
B) $\mathrm{BeO}<\mathrm{MgO}$ (basic strength)
C) $\mathrm{SO}_{2}>\mathrm{SeO}_{2}>\mathrm{TeO}_{2}$ (acidic strength)
D) $\mathrm{Mg}(\mathrm{OH})_{2}>\mathrm{Ca}(\mathrm{OH})_{2}>\mathrm{Ba}(\mathrm{OH})_{2}$ (solubility)

SECTION-2
(MORE THAN ONE TYPE)
Section - II contains 4 miltiple choice questions. Each question has four dhoices (A), (B), (C) and (D) out of which ONE or MORE may be correct.
9. The incorrect order of reactivity of the following compounds towards $S N^{2}$ reaction is
(1)

(2)

(3)

(4) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Br}$
A) $2>4>3>1$
B) $3>1>2>4$
C) $4>2>1>3$
D) $2>1>3>4$

10 In a Daniel Cell, the EMF of the cell can be increased by
A) increasing the concentration of Zn^{2+} ions
B) increasing the concentration of Cu^{2+}
C) decreasing the concentration of Cu^{2+}
D) decreasing the concentration of Zn^{2+} ions
11. Which of the following are dissimilarities between $\mathrm{H}_{4} \mathrm{P}_{4} \mathrm{O}_{12}$ and $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$?
A) Oxidation state of phosphorous
B) Number of $\mathrm{P}-\mathrm{O}-\mathrm{P}$ linkage
C) Basicity
D) Total number of atoms directly bonded to each phosphorous atom
12. Step(s) which is/are involved in the extraction of metal from zinc blende is/are:
A) froth floatation
B) roasting
C) magnetic separation
D) carbon reduction

SECTION-3

[INIEGER TYPE]
Section-III contains 6 questions. The answer to each of the questions is a single-digit integer, ranging from0 to 9.

1. The number of compounds which usually do not undergo Cannizaro's reaction is:

2. Find the number of monobromo derivatives in the given reaction (including stereo isomers).

3. $29.2 \%(\mathrm{w} / \mathrm{W}) \mathrm{HCl}$ stock solution has a density of $1.25 \mathrm{~g} \mathrm{~mL}^{-1}$. The molecular weight of HCl is $36.5 \mathrm{~g} \mathrm{~mol}^{-1}$. The volume (mL) of stock solution required to prepare a 200 mL solution of 0.4 M HCl is:
4. A weak base $\operatorname{BOH}\left(\mathrm{K}_{\mathrm{b}}=10^{-\mathrm{n}}\right)$ is titrated with a strong acid, HCl. At $\frac{3}{4}^{\text {th }}$ of the equivalence point, P^{H} of the solution is $9-\log (3)$, then ' n ' is \qquad
5. Among the sulphides, $\mathrm{HgS}, \mathrm{SnS}, \mathrm{CdS}, \mathrm{SnS}_{2}, \mathrm{Bi}_{2} \mathrm{~S}_{3}, \mathrm{As}_{2} \mathrm{~S}_{3}, \mathrm{CuS}, \mathrm{As}_{2} \mathrm{~S}_{5}, \mathrm{PbS}, \mathrm{Sb}_{2} \mathrm{~S}_{3}$ and $\mathrm{Sb}_{2} \mathrm{~S}_{5}$, the number of sulphides which are insoluble in Yellow ammonium sulphide(YAS) is:
6. Number of geometrical isomers for the complex $\left[\mathrm{CuCl}_{2} \mathrm{Br}_{2}\right]^{2-}$ is:

SECTION-4

[Matrix Matching Type]
Section-IV contains 2 questions Each question hasfour statements (A, B, C and D) given in Columl and five statements (p, q, r, s and t) in Colum II. Any given statement in Colum I can have corred matching with ONE or MORE statemert(s) given in Colum II.

1. Matching type question (where a is the unit cell edge length parameter)

Column I

Column II

A) ZnS crystal
P) F.C.C.
B) CaF_{2} crystal
Q) H.C.P
C) NaCl crystal
R) Distance between closest particles is $\frac{\sqrt{3} a}{4}$
D) Diamond crystal
S) Only one type of voids are occupied
2. Match the ores of Column-I with their composition in Column-II

COLUMN - I

(Ore)
A) Chalcopyrite
P) $\mathrm{Cu}_{2} \mathrm{O}$
B) Cuprite
C) Atacamite
D) Malachite
Q) $\mathrm{Cu}_{2}(\mathrm{OH})_{3} \mathrm{Cl}$
R) $\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3}$
S) CuFeS_{2}

COLUMN - II
(Composition)

SECTION-1

(SINGLE CORRECTCHOICE TYPE)
Sedion-I cortains 8 mitiple dhoice questions. Each question hasfour drices (A), (B), (C) and (D) out of which ONLY ONE is correct.

1. The dimensions of P, Q and R in this expression for energy E , $\mathrm{E}=[\mathrm{PM}]+\left[\mathrm{QM}^{-1} \mathrm{LT}^{-2}\right]+\left[\mathrm{RMLT}^{-1}\right]$, are
A) $\left[\mathrm{LT}^{-1}\right],\left[\mathrm{M}^{2} \mathrm{~L}\right],\left[\mathrm{L}^{2} \mathrm{~T}^{-2}\right]$
B) $\left[\mathrm{L}^{2} \mathrm{~T}^{2}\right],\left[\mathrm{M}^{2} \mathrm{~L}\right],\left[\mathrm{LT}^{-1}\right]$
C) $\left[\mathrm{M}^{2} \mathrm{~L}\right],\left[\mathrm{LT}^{-1}\right],\left[\mathrm{LT}^{-2}\right]$
D) $\left[\mathrm{LT}^{-2}\right]\left[\mathrm{LT}^{-1}\right],[\mathrm{M}]$
2. Two conducting plane loops P and Q are shaped in the form as shown in figure with radii $r_{1}=20 \mathrm{~cm}$ and $r_{2}=10 \mathrm{~cm}$. The loops are placed perpendicular to a time varying magnetic field $\mathrm{B}=(20+10 \mathrm{t}) \mathrm{wbm}^{-2}$. The maximum charge on each capacitor (in micro coulomb) is

A) 4.7
B) 5.2
C) 6.7
D) 7.8
3. A capacitor circuit is shown in the figure. Initially switch is open. Find the charges flown through switch when it is closed.

A) $2.0 \mu \mathrm{c}$
B) $3.0 \mu \mathrm{c}$
C) $4.0 \mu \mathrm{c}$
D) $5.0 \mu \mathrm{c}$
4. A lens held directly above a coin placed on a table forms an image of the coin. After the lens is moved vertically a distance equal to it's focal length, it forms another image of the coin equal in size to the previous image. If diameter of the coin is 2.0 cm , what is the diameter of the image in first position of lens?
A) 3.0 cm
B) 4.0 cm
C) 5.0 cm
D) 6.0 cm
5. A metal plate when exposed to light of wavelength λ photoelectrons are ejected. When a retarding electric field of intensity E is applied, non of the photoelectrons can move away from the plate farther than a distance d. Which of the following is a correct expression for the threshold wavelength $\lambda_{\text {th }}$
A) $\lambda_{\text {th }}=\frac{\mathrm{hc}}{\mathrm{eEd}}$
B) $\lambda_{\text {th }}=\lambda-\frac{\mathrm{hc}}{\mathrm{eEd}}$
C) $\lambda_{\text {th }}=\frac{\mathrm{hc}}{2 \mathrm{Ed}}$
D) $\lambda_{\mathrm{th}}=\left(\frac{1}{\lambda}-\frac{\mathrm{eEd}}{\mathrm{hc}}\right)^{-1}$
6. A moving neutron collides with another singly ionized helium atom in ground state at rest. What is the minimum speed of moving neutron for collision to be perfectly inelastic?
A) $2.50 \times 10^{4} \mathrm{~m} / \mathrm{sec}$
B) $4.25 \times 10^{4} \mathrm{~m} / \mathrm{sec}$
C) $6.25 \times 10^{4} \mathrm{~m} / \mathrm{sec}$
D) $9.89 \times 10^{4} \mathrm{~m} / \mathrm{sec}$
7. At present natural uranium contains 99.28% of uranium - 238 and 0.72% of uranium-235. The half life of uranium-238 and uranium-235 are, 4.56×10^{9} years and 0.71×10^{9} years respectively. Assuming concentrations of each of these uranium isotopes were identical at the time of birth of the earth, find the approximate age of the earth $($ Take $\ln (137.9)=4.93)$
A) 5.98×10^{9} years
B) 3.98×10^{9} years
C) 7.98×10^{9} years
D) 4.35×10^{9} years
8. You are fishing from a dock and you see a fish in the water. For this purpose, you can use either a bow and arrow, or a laser gun. Which of the following strategy you must follow
A) Aim the arrow below the fish and laser gun above the fish
B) Aim the arrow above fish and laser gun below fish
C) Aim the arrow below the fish and the laser gun exactly at the fish
D) Aim the arrow exactly at the fish and laser gun below the fish

Section - Il contains 4 miltiple dhoice questions. Each question has four dhoices (A), (B), (C) and (D) out of which ONE or MORE may be correct
9. A capillary tube of radius ' r ' is mounted vertically with it's bottom end inside water. The surface tension of water is σ and its density is ρ. Inside the capillary tube water rises upto a height h. Then
A) The potential energy of the liquid column is $\frac{1}{2} \pi r^{2} \mathrm{~h}^{2} \rho g$
B) The work done by the surface tension of water is $\frac{4 \pi \sigma^{2}}{\rho g}$
C) The work done by gravity is $\frac{2 \pi \sigma^{2}}{\rho g}$
D) The quantity of heat energy liberated is $\frac{2 \pi \sigma^{2}}{\rho g}$
10. The temperature of an isotropic cubical solid of length L, density ρ and coefficient of linear expansion \propto per Kelvin is heated to $20^{\circ} \mathrm{C}$. Then at this temperature to a good approximation.
A) Length of cubical solid is $L(1+20 \propto)$
B) total surface area is $\mathrm{L}^{2}(1+40 \propto)$
C) Density of cubical solid is $\rho(1+60 \propto)$
D) Density of cubical solid is $\rho(1-60 \propto)$
11. In the given circuit the A.C source has $\omega=100 \mathrm{rads}^{-1}$. Considering the inductor and capacitor to be ideal, the correct choice(s) is or are

A) The current through the circuit I is 0.3 A
B) The current through the circuit I is $0.3 \sqrt{2} \mathrm{~A}$
C) The voltage across 100Ω resistor is $10 \sqrt{2} \mathrm{~V}$
D) The voltage across 50Ω resistor is 10 V
12. In the circuit shown the switch S is closed at $t=0$ and i_{1} andi i_{2} are the instantaneous currents. Then choose correct statement(s)

A) i_{1} is maximum at $t=\infty$, and i_{2} is maximum at $t=0$
B) i_{1} at $t=0$ is equal to i_{2} at $t=\infty$
C) i_{1} and i_{2} are equal only at one instant $0<t<\infty$
D) i_{1} and i_{2} will never be equal

SECTION-3

[INIEGER TYPE]
Section-III contains 6 questions. The answer to each of the questions is a single-digit integer, ranging from0 to 9 .

1. The upper end of the thread of a simple pendulum is fixed to a vertical z axis and set in motion such that the pendulum bob moves along a horizontal circular path of radius 1 m , parallel to xy plane, 5 m above the origin. The bob has a speed of $3 \mathrm{~m} / \mathrm{sec}$. The string breaks when the bob is vertically above the x axis and lands on the $x-y$ plane. Find the magnitude of ' y ' co-ordinate in meteres of the landing point $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{sec}^{2}\right)$

2. A particle is travelling with uniform acceleration g. If p, q and r are the distances travelled by the body during $x^{\text {th }}, y^{\text {th }}$ and $z^{\text {th }}$ seconds of it's motion respectively then value of $p(y-z)+q(z-x)+r(x-y)$ is__
3. A light string of length 2.5 m attached to a nail driven on the surface of a fixed cylinder A of radius $\frac{\pi}{3} \mathrm{~m}$. The cylinder is fixed near earth surface with it's axis in horizontal position. The nail is at same horizontal level as center of cylinder. A small ball B of mass 50 gm is attached to the other end of the thread. What minimum horizontal velocity (in $\mathrm{m} / \mathrm{sec}$) must be imparted to the ball towards so that the string will remain taut during the ball is at its highest altitude. (Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{sec}^{2}$ and $\pi^{2}=10$)

4. A closed tube of length 3 m completely filled with water has a small air bubble trapped in it. When tube is held at angle 60° with vertical and rotated at constant angular velocity $\frac{\pi}{\sqrt{3}} \mathrm{rad} / \mathrm{s}$ about the vertical axis passing through it's lower end, the bubble settle down at a distance x metres from it's lower end. Find the value of x . (Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{sec}^{2}$ and $\pi^{2}=10$)

5. One mole of an ideal monoatomic gas undergoes a process $\mathrm{A}-\mathrm{B}$ shown by a straight line in P - V indicator diagram

The volume of the gas when the process turns from an endothermic to exothermic one is $\frac{5}{x} v_{0}$. Find ' x '
6. In free space two particles of equal unknown masses and known charge $+q$ and $-q$ are simultaneously projected with equal speeds ' u ' in opposite directions perpendicular to line joining them. Their initial separation is r_{0}. During the subsequent motion, the minimum speed is observed to be $\frac{u}{4}$. If the masses of the particles is given by $m=\frac{q^{2}}{\pi \epsilon_{0}{x r_{0} u^{2}}^{2}}$, then find x.

SECTION-4

[Matrix Matching Type]

Section-IV contains 2 questions. Each question has four statements (A, B, C and D) given in Column I and five statements (p, q, r, s and t) in Column II. Any given statement in Column I can have correct matching with ONE or MORE statement(s) given in Column il.

1. You are given many resistors, capacitors and inductors. These are connected to a variable D.C voltage source (the first two circuits) or an A.C. voltage source of 50 HZ frequency (the next three circuits) in different ways in Column II. When a current I (steady state for D.C and r.m.s for A.C) flows through the circuits, the corresponding voltages V_{1} and V_{2} (indicated in circuits) are related as shown in column I. Match the two

Column I

Column II

A) I $\neq 0, \mathrm{~V}_{1}$ is proportional to I
B) $\mathrm{I} \neq 0, \mathrm{~V}_{2}>\mathrm{V}_{1}$
C) $\mathrm{V}_{1}=0, \mathrm{~V}_{2}=\mathrm{V}$

R)

D) $\mathrm{I} \neq 0, \mathrm{~V}_{2}$ is proportional to I
S)

2. See the diagrams carefully in Column I and match each with the obeying relation(s) in Column II. The string is massless and pulley is frictionless in each case. Here $\mathrm{a}=\frac{\mathrm{g}}{3}, \mathrm{~m}=$ mass of block, $\mathrm{T}=$ tension in the given string $a_{\text {pulley }}=$ acceleration of given pulley in each case, acceleration due to gravity is g, $T_{1}=$ Force on fixed support.

Column I
A)
B)

Column II
P) $\mathrm{a}_{\text {block }} \leq \mathrm{a}$
Q) $\quad \mathrm{a}_{\text {pulley }} \leq \mathrm{a}$
C)

R) $\mathrm{T}>\mathrm{mg}$

S) $\mathrm{T}_{1}>\frac{3}{2} \mathrm{mg}$
T) $\mathrm{T}_{1}<\frac{3}{2}$ mg

SECTION-1

(SINGLE CORRECT CHOICE TYPE)
Section-I contains 8 mitiple dhoice questions. Each question hasfour dhoices(A), (B), (C) and (D) out of whid ONLY ONE is correct.

1. If $4 \overline{\mathrm{a}}+5 \overline{\mathrm{~b}}+9 \overline{\mathrm{c}}=\overline{0}$ then $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times[(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{a}})]$ is equal to
A) $\lambda(\bar{b} .(\overline{\mathrm{c}} \times \overline{\mathrm{a}})), \lambda \in \mathrm{R}$
B) $\overline{0}$
C) $\lambda(\overline{\mathrm{c}} .(\overline{\mathrm{a}} \times \overline{\mathrm{b}})), \lambda \in \mathrm{R}$
D) None
2. Absolute maximum value of the function $f(x)=\frac{1}{|x-4|+1}+\frac{1}{|x+8|+1}$ is
A) $\frac{3}{2}$
B) $\frac{5}{4}$
C) $\frac{13}{14}$
D) $\frac{14}{13}$
3. Let $f(x)$ be a monotonic polynomial of $2 m-1$ degree where $m \in N$, then the equation $f(x)+f(3 x)+\ldots . .+f((2 m-1) x)=2 m-1$ has
A) At least one real root
B) $(2 \mathrm{~m}-1)$ real roots
C) Exactly one real root
D) None of these
4. Area of the region bounded by the curves $|y|=e^{-|x|}-\frac{1}{2}$ and $\frac{|x|+|y|}{2}+\left|\frac{|x|-|y|}{2}\right|=2$ is
A) $16-\ln 4$
B) $14-\ln 4$
C) $16+\ln 4$
D) $14+\ln 4$
5. The ratio of the area enclosed by the locus of mid-point of PS and area of the ellipse where P is any point on the ellipse and S is the focus of the ellipse, is
A) $\frac{1}{2}$
B) $\frac{1}{3}$
C) $\frac{1}{5}$
D) $\frac{1}{4}$
6. Number of ordered triplets $(\mathrm{p}, \mathrm{q}, \mathrm{r})$ where $1 \leq \mathrm{p}, \mathrm{q}, \mathrm{r} \leq 10$. Such that $2^{\mathrm{p}}+3^{\mathrm{q}}+5^{\mathrm{r}}$ is a multiple of 4 is $(\mathrm{p}, \mathrm{q}, \mathrm{r} \in \mathrm{N})$
A) 1000
B) 500
C) 250
D) 125
7. The coefficient of x^{5} in the expansion of $\left(x^{2}-x-2\right)^{5}$ is
A) -83
B) -82
C) -86
D) -81
8. If $0<\alpha<\beta<\gamma<\frac{\pi}{2}$, then $\frac{\sin \alpha+\sin \beta+\sin \gamma}{\cos \alpha+\cos \beta+\cos \gamma}$ lies between
A) $\sin \alpha$ and $\sin \gamma$
B) $\tan \alpha$ and $\tan \gamma$
C) $\cos \alpha$ and $\cos \gamma$
D) $\cot \alpha$ and $\cot \gamma$

SECTION-2
 (MORE THAN ONE TYPE)

Section - II contains 4 multiple dhoice questions. Each question has four dhoices (A), (B), (C) and (D) out of which ONE or MORE may be correct
9. Three parallel chords of a circle having lengths $2,3,4$ units, subtend angles α, β, γ respectively at the center, then
A) $\cos \alpha=\frac{17}{32}$
B) $\cos \alpha=\frac{7}{8}$
C) $\cos \beta=\frac{17}{35}$
D) $\alpha+\beta=\gamma$
10. If the roots of the equation $x^{2}+a x+b=0$ are c and d then the roots of the equation $x^{2}+(2 c+a) x+c^{2}+a c+b=0$ are
A) c
B) 2 c
C) $d-c$
D) 0
11. If the equation $x^{5}-10 a^{3} x^{2}+b^{4} x+c^{5}=0$ has three equal roots, then
A) $2 b^{2}-10 a^{3} b^{2}+c^{5}=0$
B) $6 a^{5}+c^{5}=0$
C) $2 c^{5}-10 a^{3} b^{2}+b^{4} c^{5}=0$
D) $b^{4}=15 a^{4}$
12. Let $s(n)$ denotes the number of ordered pairs satisfying $\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$ where $\mathrm{n}>1, \mathrm{x}, \mathrm{y}, \mathrm{n} \in \mathrm{N}$. Then
A) $S(6)=9$
B) $\mathrm{S}(5)=3$
C) $\mathrm{S}(3)=5$
D) $S(7)=3$

SECTION-3

[INIEGER TYPE]
Section-III contains 6 questions The answer to each of the questions is a single-digit integer, ranging from0 to 9 .

1. Let $f(x)=(x+1)(x+2)(x+3)(x+4)+5$ where $x \in[-6,6]$. If the range of the function is $[a, b]$ where $a, b \in N$, then the value of $\frac{a+b}{1683}$ is.....
2. Let $f(x)=a_{1} \sin x+a_{2} \sin 2 x+\ldots . .+a_{n} \sin n x$, where $a_{i} \in R$ and $n \in$ N. If $|\mathrm{f}(\mathrm{x})| \leq|\sin \mathrm{x}|, \forall \mathrm{x} \in \mathrm{R}$, then maximum value of $\left|\mathrm{a}_{1}+2 \mathrm{a}_{2}+\ldots . .+\mathrm{na}_{\mathrm{n}}\right|$ is $\ldots .$.
3. If ω is the imaginary cube roots of unity, then no. of pairs of integers (a, b) such that $|a \omega+b|=1$ is.
4. If 1 lies between the roots of the equation $p^{2}-m p+1=0$ and $[x]$ denotes the greatest integer function then the value of $\left[\left(\frac{4|x|}{|x|^{2}+16}\right)^{m}\right]$ is.....
5. Given $\bar{A}=2 i+3 j+6 k, \bar{B}=i+j-2 k$ and $\bar{C}=i+2 j+k$. If $|\bar{A} \times(\bar{A} \times(\bar{A} \times \bar{B})) \cdot \bar{C}|=a b c, a, b, c$ are digits from 1 to 9 then $\mathrm{a}+\mathrm{b}-\mathrm{c}$ equals.....
6. Suppose that $\mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{t}$ are complex numbers for which
$u+v+w+t=0=u^{2}+v^{2}+w^{2}+t^{2}$ then $\frac{\left(u^{4}+v^{4}+w^{4}+t^{4}\right)^{2}}{u^{8}+v^{8}+w^{8}+t^{8}}=$

SECTION-4

[Matrix Matching Type]

Section-IV contains 2 questions Each questionhas four statements (A, B, C and D) given inColuml and five tatemerts (p, q, r, s and t) in Colum II. Ary given statemert inColumI can have corred matching with ONE or MORE statemert(s) given inColum II.

1. Match the following

Column I

A) $\mathrm{f}: \mathrm{R} \rightarrow[\pi / 4, \pi)$ and
$f(x)=\cot ^{-1}\left(2 x-x^{2}-2\right)$ then $f(x)$ is
B) $f: R \rightarrow R$ and $f(x)=e^{a x} \sin b x$, , where
$a, b \in R^{+}$, then $f(x)$ is
C) $f: R^{+} \rightarrow[2, \infty)$ and $f(x)=2+3 x^{2}$, then $f(x)$ is
D) $f: X \rightarrow X$ and $f(f(x))=x, \forall x \in X$, then $f(x)$ is

Column II

P) One - one
Q) Into
R) Many one
S) onto
2. Match the following

Column I

A) If α, β, γ be lengths of medians of $\triangle \mathrm{ABC}$, then \mathbf{P}) $\frac{\alpha^{2}+\beta^{2}+\gamma^{2}}{a^{2}+b^{2}+c^{2}}$ is equal to
B) Let the point P lies in the interior of an \mathbf{Q}) equilateral $\triangle A B C$ of side length 2 and its distances from the sides, $B C, C A$ and $A B$ are respectively x, y, z then $x+y+z$ is equal to
C) In $\triangle \mathrm{ABC} A, B, C$ are in A.P. and a, b, c are in G.P. then $\frac{a^{2} b+b^{2} c+c^{2} a}{a^{3}+b^{3}+c^{3}}$ is equal to
D) In $\triangle A B C$, the least value of $\frac{\sqrt{a b c(a+b+c)}}{\Delta}$ is (where Δ is area of $\Delta \mathrm{ABC}$)

Column II

1

ANSWER KEY

CHEMISTRY		PHYSICS		MATHEMATICS	
1	B	1	B	1	B
2	C	2	D	2	D
3	B	3	D	3	C
4	D	4	B	4	D
5	A	5	D	5	D
6	B	6	D	6	B
7	B	7	A	7	D
8	D	8	C	8	B
9	ABC	9	ABD	9	AD
10	BD	10	AD	10	CD
11	B	11	AC	11	BD
12	ABD	12	ABC	12	ABD
1	3	1	3	1	3
2	2	2	0	2	1
3	8	3	5	3	6
4	5	4	2	4	0
5	5	5	8	5	4
6	0	6	5	6	4
1	$\begin{array}{\|l\|} \hline \text { A - PQRS } \\ \text { B - PRS } \\ \text { C - PS } \\ \text { D - PRS } \\ \hline \end{array}$	1	$\begin{aligned} & \hline \text { A -RST } \\ & \text { B - QRST } \\ & \text { C - PQ } \\ & \text { D - QRST } \\ & \hline \end{aligned}$	1	
2	$\begin{array}{\|l\|} \hline A-S \\ B-P \\ C-Q \\ D-R \\ \hline \end{array}$	2	$\begin{array}{\|l\|} \hline \text { A -QRS } \\ \text { B - PQR } \\ \text { C - PQRS } \\ \text { D - PS } \\ \hline \end{array}$	2	$\begin{array}{\|l\|} \hline A-R \\ B-Q \\ C-P \\ D-S \\ \hline \end{array}$

CHEMISTRY

2. -I effect at dienophile favour Diels
3. Methyl orange indicator
4. B

$$
\mathrm{E}_{\mathrm{af}}-\mathrm{E}_{\mathrm{ab}}=\Delta \mathrm{h}
$$

7. $\mathrm{He}_{2}: \sigma_{18^{2}} \sigma_{15^{2}} ; \mathrm{He}_{2}^{+}: \sigma_{15^{3}} \sigma_{1 s^{\prime}}^{*}$

$$
\mathrm{H}_{2}: \sigma_{\mathrm{Is}^{2}} ; \mathrm{H}_{2}^{+}: \sigma_{\mathrm{ss}^{\prime}}
$$

8. $\mathrm{BeF}_{2}>\mathrm{BaF}_{2}>\mathrm{SrF}_{2}>\mathrm{CaF}_{2}>\mathrm{MgF}_{2}$ - solubility
9. Edmans reagent used for N -Terminal
10. $\quad \mathrm{ZnS}$ (impur) $\xrightarrow{\text { froth hloation }} \mathrm{ZnS} \xrightarrow{\text { rasting }} \mathrm{ZnO} \xrightarrow{\text { caton redection }} \mathrm{Zn}$
11. Conceptual
12. PTC are used in Riemer tiemann
13. Conceptual
14. 5

At $\frac{3^{\text {th }}}{}{ }^{\text {th }}$ of the equivalence point,
$\mathrm{P}^{\mathrm{OH}}=\mathrm{P}^{\mathrm{Kb}}+\log \frac{[5]}{[3]}$
$\mathrm{P}^{\mathrm{OH}}=\mathrm{P}^{\mathrm{Kb}}+\log \frac{(3 / 4)}{(1 / 4)}$
$\mathrm{P}^{\mathrm{OH}}=\mathrm{P}^{\mathrm{Kb}}+\log (3)$
$\mathrm{P}^{\mathrm{H}}=14-\mathrm{P}^{\mathrm{OH}}$
$=14-\mathrm{P}^{\mathrm{Kb}}-\log (3)$
$\Rightarrow 14-\mathrm{P}^{\mathrm{K}_{\mathrm{b}}}=9 \Rightarrow \mathrm{P}^{\mathrm{K}_{\mathrm{b}}}=5$
$\therefore \mathrm{P}^{\mathrm{Kb}}=5$
$\therefore \mathrm{K}_{\mathrm{b}}=10^{-5} \quad \therefore \mathrm{n}=5$
17. Sulphides of Sn, As and Sb are soluble in YAS
18. $\left[\mathrm{CuCl}_{2} \mathrm{Br}_{2}\right]^{2-}$ is a tetrahedral complex

PHYSICS

21. Dimension of Energy is $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$

So, $[\mathrm{PM}]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$, Hence $\mathrm{P}=\left[\mathrm{L}^{2} \mathrm{~T}^{-2}\right]$
$\left[\mathrm{QM}^{-1} \mathrm{LT}^{-2}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$, Hence $\mathrm{Q}=\left[\mathrm{M}^{2} \mathrm{~L}\right]$
$\left[\mathrm{RMLT}^{-1}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$, Hence $\mathrm{R}=\left[\mathrm{LT}^{-1}\right]$
Hence option (B) is correct
22. Here induced emf's are opposite of each other and capacitors connected in series

So $\mathrm{Q}=\left(\varepsilon_{1}-\varepsilon_{2}\right) \mathrm{c}_{\mathrm{eq}}$
$=\pi\left(\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2}\right) \frac{\mathrm{C}}{2} \frac{\mathrm{~dB}}{\mathrm{dt}}$
$=\left[\pi(400-30) \times 10^{-4} \times 5 \times 10^{-6} \times 10\right] \mathrm{C}$
$=1.5 \pi \mu \mathrm{C}$
$=4.7 \mu \mathrm{c}$
23. When switch is open

Hence, charge flown through switch is $5 \mu \mathrm{C}$
24. $m=\frac{f}{u+f}$

Here object is real, so we can imagine a situation like this with a converging lens say object is placed at a distance ' x ' from focus towards pole in first position and at a distance y from focus away from pole is $2^{\text {nd }}$ position one image is virtual and other is real.

So, $\frac{f}{-(f-x)+f}=-\frac{f}{-(f+y)+f}$
Hence, $\mathrm{x}=\mathrm{y}$
And $x+y=f$
$\Rightarrow \mathrm{x}=\frac{\mathrm{f}}{2}$
Hence, $x= \pm 2$
So diameter of coin is 4 cm
25. The maximum kinetic energy electrons can reach a maximum distance of d

Hence, $\frac{\mathrm{hc}}{\lambda}-\frac{\mathrm{hc}}{\lambda_{\mathrm{th}}}=\mathrm{eEd}$
$\Rightarrow \lambda_{\mathrm{th}}=\left(\frac{1}{\lambda}-\frac{\mathrm{eEd}}{\mathrm{hL}}\right)^{-1}$
26. Mass of helium atom is 4 times mass of neutron (approx). If collision is perfectly in elastic the energy lost is completely utilized for excitation of He^{+}atom, $\mathrm{mu}=5 \mathrm{mv} \Rightarrow \mathrm{v}=\frac{4}{5}$
$\Delta \mathrm{E}=\frac{1}{2} \mathrm{mu}^{2}-\frac{1}{2} \mathrm{mv}^{2}=\frac{2}{5} \mathrm{mu}^{2}$
For minimum energy of neutron $\frac{2}{5} \mathrm{mu}^{2}=40+8 \mathrm{~cm}$
Here $u=9.89 \times 10^{4} \mathrm{~m} / \mathrm{sec}$
27. Say initially concentration of $U-238 \& U-235$ is $2 N o$

Then, $N_{1}=N_{0} e^{-\lambda_{1} t}$ and $N_{2}=N_{0} e^{-\lambda_{2} t}$
Hence, $\frac{\mathrm{N}_{1}}{\mathrm{~N}_{1}+\mathrm{N} 2}=9928$ and $\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}+\mathrm{N}_{2}}=0072$
$\Rightarrow \frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\frac{9928}{.0072}$
$\Rightarrow \frac{\mathrm{e}^{-\lambda_{1} \mathrm{t}}}{\mathrm{e}^{-\lambda_{1} \mathrm{t}}}=\frac{9928}{0072}$
$\Rightarrow\left(\lambda_{2}-\lambda_{1}\right) \mathrm{t}=\ln \frac{9928}{0072}$
$\Rightarrow \mathrm{t}=\ln \frac{.9928}{.0072} / \ln 2\left(\frac{1}{.71 \times 10^{9}}-\frac{1}{4.56 \times 10^{9}}\right)$
$=5.98 \times 10^{9}$ years
29. P.E. of liquid column $=\frac{\mathrm{mgh}}{2}=\frac{\pi \mathrm{r}^{2} \text { h.g. }}{2}$
$=\frac{1}{2} \pi r^{2} h^{2} \mathrm{~g}$
As $\mathrm{h}=\frac{2 \sigma}{\mathrm{r} \rho \mathrm{g}}=$ we will get P.E. $=\frac{2 \pi \sigma^{2}}{\rho g}$

Work done by surface tension $\sigma .2 \pi$ r.h

$$
=\frac{4 \pi \sigma^{2}}{\rho g}
$$

Working done by gravity $\frac{-2 \pi \sigma^{2}}{\rho g}$
Heat liberated is $=W_{\text {surface tension }}$ - change in P.E.
$=\frac{2 \pi \sigma^{2}}{\pi \mathrm{~g}}$
30. Conceptual
31. Current through RC circuit $=I_{1}=\frac{20}{100 \sqrt{2}} \mathrm{Amp}=.141 \mathrm{Amp}$

Current through RL circuit $=I_{2}=\frac{20}{50 \sqrt{2}} \mathrm{Amp}=.282 \mathrm{Amp}$
So current $\mathrm{I}=\sqrt{\mathrm{I}_{1} 2+\mathrm{I}_{2}^{2}}=.3 \mathrm{Amp}$
Voltage across 100Ω resistor $=\mathrm{I}_{1} \times 10=10 \sqrt{2} \mathrm{~V}$
Voltage across 50Ω resistor $=I_{2} \times 100=10 \sqrt{2} V$

32. Conceptual

33. At the moment of breaking of string velocity is along + ve y-axis. Hence, it will be a projectile is YZ plane time of flight $=\sqrt{\frac{2 \times 5}{10}}=1 \mathrm{sec}$

Y co-ordinate $=\mathrm{v} \times \mathrm{t}=3 \mathrm{~m}$
34. $\mathrm{p}=\mathrm{u}+\frac{\mathrm{g}}{2}(2 \mathrm{x}-1)$
$\mathrm{q}=\mathrm{u}+\frac{\mathrm{g}}{2}(2 \mathrm{y}-1)$
$\mathrm{r}=\mathrm{u}+\frac{\mathrm{y}}{2}(2 \mathrm{z}-1)$
So $q-r=g(y-z)$
Hence, $y-z=\frac{q-r}{g}$
Similarly $z-x=\frac{r-p}{g}$ and $x-y=\frac{p-q}{g}$

So, $p(y-z)+q(z-n)+r(x-y)=\frac{p(q-r)+q(r-p)+r(p-q)}{q}=0$
35. The string must be taut at highest position

So, $v=\sqrt{g(\ell-\pi r)}$
Conserving energy we will get
$\frac{1}{2} m u^{2}-\frac{1}{2} m v^{2}=\operatorname{mg}(\ell+\ell-\pi r)$
$\Rightarrow \mathrm{u}^{2}=\mathrm{v}^{2}+2 \mathrm{~g}(2 \ell-\pi \mathrm{r})$
$\Rightarrow \mathrm{u}^{2}=\mathrm{g}(\ell-\pi \mathrm{r})+2 \mathrm{~g}(2 \ell-\pi \mathrm{r})$
$\Rightarrow \mathrm{u}^{2}=\mathrm{g}(5 \ell-3 \pi \mathrm{r})$
$\Rightarrow \mathrm{u}=\sqrt{\mathrm{g}(5 \ell-3 \pi \mathrm{r})}=\sqrt{10\left(12.5-3 \times \pi \times \frac{\pi}{3}\right)}$
$=\sqrt{10 \times 2.5}=5 \mathrm{~m} / \mathrm{sec}$
36. The bubble will settle at that position where rate of change of pressure is zero
37. The equation of the process is
$\mathrm{P}=\frac{-\mathrm{P}_{0}}{\mathrm{~V}_{0}} . \mathrm{V}+\mathrm{P}$
$\Rightarrow \mathrm{RT}=\frac{-\mathrm{P}_{0}}{\mathrm{~V}_{0}} \cdot \mathrm{~V}^{2}+\mathrm{P}_{0} \mathrm{~V}$
$\Rightarrow \mathrm{RdT}=\frac{-\mathrm{P}_{0}}{\mathrm{~V}_{0}} \cdot 2 \mathrm{~V} \cdot \mathrm{dV}+\mathrm{P}_{0} \mathrm{dV}$
$\Rightarrow d V=\frac{R}{-\frac{\mathrm{P}_{0}}{\mathrm{~V}_{0}} \cdot 2 \mathrm{~V}+\mathrm{P}_{0}}$
When process changes form exdothermic to exothermic rate of heat exchange become zero.

Hence, $\frac{\Delta H}{\Delta T}=0 \Rightarrow C=0$
Again $c=C_{v}+\frac{P d V}{d T}=\frac{\left(-\frac{P_{0}}{V_{0}} V+P_{0}\right) d V \cdot R}{\left(\frac{-P_{0}}{V_{0}} \cdot 2 V+P_{0}\right) d V}+C_{v}$

$$
\begin{aligned}
& \text { When } \mathrm{C}=0 \\
& \Rightarrow \frac{\mathrm{R}}{\gamma-1}=\mathrm{C}_{\mathrm{v}}=\frac{-\left(-\frac{\mathrm{v}}{\mathrm{~V}_{0}}+1\right) \mathrm{R}}{-\frac{2 \mathrm{~V}}{\mathrm{~V}_{0}}+1} \\
& \Rightarrow \frac{-2 \mathrm{~V}}{\mathrm{~V}_{0}}+1=(\gamma-1)\left(\frac{\mathrm{V}}{\mathrm{~V}_{0}}-1\right) \\
& \Rightarrow \frac{\mathrm{V}}{\mathrm{~V}_{0}}(\gamma-1+2)=\gamma \\
& \Rightarrow \mathrm{V}=\mathrm{V}_{0} \frac{\gamma}{\gamma+1}=\frac{5}{8} \mathrm{~V}_{0}
\end{aligned}
$$

38. Centre of mass of the system is at rest. w.r.t. centre of mass momentum as well as energy is conserved.
$\frac{\operatorname{mur}^{0}}{2}=\frac{\mathrm{mu}}{4} . \mathrm{r} \Rightarrow \mathrm{r}=2 \mathrm{r}_{0}$
$\mathrm{mu}^{2}-\frac{\mathrm{Kq}^{2}}{\mathrm{r}_{0}}=\frac{\mathrm{mu}^{2}}{16}-\frac{\mathrm{Kq}^{2}}{\mathrm{r}}$
Solving we will get $\mathrm{m}=\frac{\mathrm{q}^{2}}{\pi_{0} 5 \mathrm{r}_{0} \mathrm{u}^{2}}$
39. Conceptual
40. Conceptual

MATHS

41. $\overline{\mathrm{a}}, \bar{b}, \overline{\mathrm{c}}$ are coplanar $\Rightarrow \overline{\mathrm{b}} \times \overline{\mathrm{c}} \& \overline{\mathrm{c}} \times \overline{\mathrm{a}}$ are collinear.
42. $\because f(x)$ is increasing in $(-\infty,-8)$ and decreasing $(4, \infty)$

$$
\begin{aligned}
& \therefore f(x)=\frac{1}{x+9}+\frac{1}{5-x} \forall x \in[-8,4] \\
& =\frac{14}{(9+x)(5-x)}, \text { minimum of }(9+x)(5-x)
\end{aligned}
$$

Occurs at $x=-8 \& x=4$
\therefore Maximum of $\mathrm{f}(\mathrm{x})=1+\frac{1}{13}=\frac{14}{13}$
43. $f^{\prime}(p x)>0$ orf $f^{\prime}(p x)<0 \forall p, x \in R$
$\Rightarrow \mathrm{f}(\mathrm{px})$ is monotonic
$\therefore \mathrm{f}(\mathrm{x})+\mathrm{f}(3 \mathrm{x})+\ldots .+\mathrm{f}((2 \mathrm{~m}-1) \mathrm{x})$ is monotonic polynomial of degree $2 \mathrm{~m}-1$
44. $|\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})|+|\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})|$
$=2 \max \{|f(\mathrm{x})|,|\mathrm{g}(\mathrm{x})|\}$
45. Ellipse equation is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, Area $=\pi a b$

Let $P=(a \cos \theta, b \sin \theta) S=(a e, 0)$
$\mathrm{M}(\mathrm{h}, \mathrm{k})$ mid point of $\mathrm{PS} \quad \Rightarrow h=\frac{a e+a \cos \theta}{2} ; k=\frac{b \sin \theta}{2}$
$=\frac{h-\frac{a e}{2}}{a / 2}+\frac{k^{2}}{\left(b^{2} / 4\right)}=1$, locus of (h, k) is ellipse \quad Area $=\pi\left(\frac{a}{2}\right)\left(\frac{b}{2}\right)=\frac{1}{4} \pi a b$
46. $2^{p}+3^{q}+5^{r}=2^{p}+(4-1)^{q}+(4+1)^{r}$
$=2^{p}+4 m+(-1)^{q}+4 n+1$
Case (i) $\mathrm{P}=1, \mathrm{q}$ is even, r can be any thing
No. of triplets $=1 \times 5 \times 10=50$
Case (ii) $\mathrm{p} \neq 1$, q is odd, r can be any thing
No. of triples $=9 \times 5 \times 10=450$
47. $(x-2)^{5}(1+x)^{5}$
$=\left[{ }^{5} \mathrm{C}_{0} \mathrm{x}^{5}-2 \times{ }^{5} \mathrm{c}_{1} \cdot \mathrm{x}^{4}+\ldots ..\right]\left[{ }^{5} \mathrm{C}_{0}+{ }^{5} \mathrm{C}_{1} \mathrm{x}+\ldots ..\right]$
\Rightarrow coeff .of $x^{5}=-81$
48. $3 \sin \alpha<\sin \alpha+\sin \beta+\sin \gamma<3 \sin \gamma$
$3 \cos \alpha>\cos \alpha+\cos \beta+\cos \gamma>3 \cos \gamma$
$\Rightarrow \frac{1}{3 \cos \alpha}<\frac{1}{\cos \alpha+\cos \beta+\cos \gamma}<\frac{1}{3 \cos \gamma}$
$\Rightarrow \tan \alpha<\frac{\sin \alpha+\sin \beta+\sin \gamma}{\cos \alpha+\cos \beta+\cos \gamma}<\tan \gamma$
49. Construct a triangle ABC with sides 2, 3, 4. Then construct a circle circumscribing triangle ABC
$\cos \frac{\alpha}{2}=\frac{7}{8} \Rightarrow \cos \alpha=\frac{17}{32}$
(Equal chords subtends equal angle)
50. $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{ax}+\mathrm{b}$
$\Rightarrow \mathrm{x}^{2}+(2 \mathrm{c}+\mathrm{a}) \mathrm{x}+\mathrm{c}^{2}+\mathrm{ac}+\mathrm{b}=\mathrm{f}(\mathrm{x}+\mathrm{c})$
\therefore Roots are $0, \mathrm{~d}-\mathrm{c}$
51. $\mathrm{f}(\mathrm{x})=\mathrm{x}^{5}-10 \mathrm{a}^{3} \mathrm{x}^{2}+\mathrm{b}^{4} \mathrm{x}+\mathrm{c}^{5}$
$f^{\prime}(x)=5 x^{4}-20 a^{3} x+b^{4}$
$f^{\prime \prime}(x)=20 x^{3}-20 a^{3}$
$\mathrm{f}(\alpha)=\mathrm{f}^{\prime}(\alpha)=\mathrm{f}^{\prime \prime}(\alpha)=0 \Rightarrow \alpha=\mathrm{a}$
and $5 a^{4}-20 a^{4}+b^{4}=0 \Rightarrow b^{4}=15 a^{4}$
Also, $\alpha^{5}-10 a^{3} \alpha^{2}+b^{4} \alpha+c^{5}=0$
$\Rightarrow \mathrm{a}^{5}-10 \mathrm{a}^{5}+\mathrm{ab}^{4}+\mathrm{c}^{5}=0$
$\Rightarrow 6 \mathrm{a}^{5}+\mathrm{c}^{5}=0$
52. Given expression is $(x-n)(y-n)=n^{2}$

No. of solutions $=S(n)=$ No. of factors of n^{2}
$S(6)=$ No. of factors of 6^{2} i.e., $2^{2} .3^{2}=3 \times 3=9$
If n is prime i.e., $n=p$, no. of factors of p^{2} is 3.(1.p.p ${ }^{2}$)
53. $\mathrm{f}(\mathrm{x})=\left(\mathrm{x}^{2}+5 \mathrm{x}+5\right)^{2}+4$
$\therefore \mathrm{a}=4$, max. of $\mathrm{f}(\mathrm{x})$ will be at $\mathrm{x}=6$
$b=(36+30+5)^{2}+4=71^{2}+4=5045$
54. $\quad f^{\prime}(x)=\underset{h \rightarrow 0}{\operatorname{lt}} \frac{f(x+h)-f(x)}{h} \Rightarrow f^{\prime}(0)=\operatorname{lt}_{h \rightarrow 0} \frac{f(h)}{h}$

Also, $\left|\frac{\mathrm{f}(\mathrm{h})}{\mathrm{h}}\right| \leq\left|\frac{\sinh }{\mathrm{h}}\right| \Rightarrow\left|\mathrm{f}^{\prime}(0)\right| \leq 1$
55. $(\mathrm{a} \omega+\mathrm{b})(\mathrm{a} \bar{\omega}+\mathrm{b})=1 \Rightarrow(\mathrm{a}-\mathrm{b})^{2}+\mathrm{ab}=1$

Case (i) $(\mathrm{a}-\mathrm{b})^{2}=0$ and $\mathrm{ab}=1$ then solutions are $\{(1,1),(-1,-1)\}$
Case (ii) $(a-b)^{2}=1$ and $a b=0$ then solutions are

$$
\{(0,1),(1,0),(-1,0),(0,-1)\}
$$

56. Let $\mathrm{f}(\mathrm{p})=\mathrm{p}^{2}-\mathrm{mp}+1, \because \mathrm{f}(1)<0 \Rightarrow 2-\mathrm{m}<0 \Rightarrow \mathrm{~m}>2$

Also, $\frac{|x|^{2}+16}{2} \geq 4|x| \Rightarrow 0 \leq \frac{4|x|}{|x|^{2}+16} \leq \frac{1}{2}$
$\Rightarrow 0 \leq\left(\frac{4|\mathrm{x}|}{|\mathrm{x}|^{2}+16}\right)^{\mathrm{m}}<1$
57. $\because \overline{\mathrm{A}} \times(\overline{\mathrm{A}} \times(\overline{\mathrm{A}} \times \overline{\mathrm{B}})) \cdot \overline{\mathrm{C}}=-|\overline{\mathrm{A}}|^{2}[\overline{\mathrm{~A}} \overline{\mathrm{~B}} \overline{\mathrm{C}}]$
$|\overline{\mathrm{A}}|^{2}=49$ and $[\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}]=7$
58. $(\mathrm{u}+\mathrm{v}+\mathrm{w}+\mathrm{t})^{2}=\Sigma \mathrm{u}^{2}+2 \Sigma \mathrm{uv} \Rightarrow \Sigma \mathrm{uv}=0$ [using given condition]

So, let the quartic equation whose roots are u, v, w, t be
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}-\mathrm{ax}-\mathrm{b}$ so, $\mathrm{x}^{\mathrm{n}+4}-\mathrm{ax}^{\mathrm{n}+1}-\mathrm{bx}^{\mathrm{n}}=0$
$\Rightarrow \mathrm{s}_{\mathrm{n}+4}-\mathrm{as}_{\mathrm{n}+1}-\mathrm{bs}_{\mathrm{n}}=0$
Where $s_{n}=u^{n}+v^{n}+w^{n}+t^{n}$
Required is $\frac{\left(\mathrm{s}_{4}\right)^{2}}{\mathrm{~s}_{8}} \mathrm{~s}_{1}=0, \mathrm{~s}_{2}=0$
59. A) $f^{\prime}(x)$ changes sign in the neighbourhood of $x=2,2 x-x^{2}-2=-1-(x-1)^{2} \leq-1$
$\Rightarrow \mathrm{R}_{\mathrm{f}} \equiv[3 \pi / 4, \pi)$
B) $-e^{a x} \leq e^{a x} \sin b x \leq e^{a x}$
C) $\mathrm{f}^{\prime}(\mathrm{x})>0 \forall \mathrm{x} \in \mathrm{R}^{+}, \mathrm{R}_{\mathrm{f}} \equiv(2, \infty)$
D) Let $X \equiv\left\{x_{1}, x_{2}, \ldots \ldots, x_{n}\right\}$

Let $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{x}_{2} \Rightarrow \mathrm{ff}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \Rightarrow \mathrm{f}\left(\mathrm{x}_{2}\right)=\mathrm{x}_{1}$
60. A) $\alpha^{2}=\frac{1}{4}\left(2 b^{2}+2 c^{2}-a^{2}\right), \beta^{2}=\frac{1}{4}\left(2 c^{2}+2 a^{2}-b^{2}\right)$
$\gamma^{2}=\frac{1}{4}\left(2 a^{2}+2 b^{2}-c^{2}\right)$
$\Rightarrow \alpha^{2}+\beta^{2}+\gamma^{2}=\frac{3}{4}\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)$
B) $\frac{1}{2}(x+y+z) \times 2=\frac{\sqrt{3}}{4} \times 2^{2}$
$\Rightarrow \mathrm{x}+\mathrm{y}+\mathrm{z}=\sqrt{3}$
C) $\angle \mathrm{B}=60^{\circ} \Rightarrow \angle \mathrm{A}+\angle \mathrm{C}=120^{\circ}$
$\mathrm{b}^{2}=\mathrm{ac} \Rightarrow \sin ^{2} \mathrm{~B}=\sin \mathrm{A} \cdot \sin \mathrm{C}$
$\Rightarrow \frac{3}{4}=\sin \mathrm{A} \sin \mathrm{C}$
$\Rightarrow \frac{3}{2}=\cos (\mathrm{A}-\mathrm{C})-\cos (\mathrm{A}+\mathrm{C})$
$\Rightarrow \cos (\mathrm{A}-\mathrm{C})=1 \Rightarrow \angle \mathrm{~A}=\angle \mathrm{C}$
Δ is equilateral
D) $\frac{\sqrt{\mathrm{abc}(\mathrm{a}+\mathrm{b}+\mathrm{c})}}{\Delta}=\frac{1}{\Delta} \sqrt{4 \mathrm{R} \Delta .2 \mathrm{~S}}=\sqrt{\frac{8 \mathrm{RS}}{\Delta}}$
$=\sqrt{\frac{8 \mathrm{R}}{\mathrm{r}}} \geq \sqrt{8 \times 2}=4$

