filiJ $\boldsymbol{\epsilon}$ FARIDABAD MOCK PRACTICE PAPER FOR JE -Mains- 2020 MOCK PRACTICE PAPER-14

INSTRUCTIONS

Caution: Question Paper CODE as given above MUST be correctly marked in the answer OMR sheet before attempting the paper. Wrong CODE or no CODE will give wrong results.
A. General Instructions

1. Attempt ALL the questions. Answers have to be marked on the OMR sheets.
2. The Test Booklet consists of $\mathbf{9 0}$ questions. The maximum marks are $\mathbf{3 6 0}$.
3. There are Three parts in the question paper. Part 1: Mathematics, Part 2 : Physics and Part 3 is Chemistry. Each question is allotted 4 (four) marks for correct response.
4. Candidates will be awarded marks as stated above in instruction No. 3 for correct response of each question. -1 mark will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
5. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instruction 4 above.
6. $\quad \ln \mathrm{OMR}, \mathbf{1}=\mathbf{A}, \mathbf{2}=\mathbf{B}, \mathbf{3}=\mathbf{C}, \mathbf{4}=\mathbf{D}$.

Name of the Candidate : \qquad
Batch : \qquad Date of Examination : \qquad
Enrolment Number : \qquad

PART-A

SECTION - I

Straight Objective Type

This section contains 24 questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which ONLY ONE is correct.

1. The area bounded by the curves $\sqrt{x}+\sqrt{y}=1$ and $x+y=1$ is
(1) $\frac{1}{3}$
(2) $\frac{1}{6}$
$\begin{array}{ll}\text { (3) } \frac{1}{2} & \text { (4) } \frac{5}{6}\end{array}$
2. If $a, b, c, d \in R$ then the equation $\left(x^{2}+a x-3 b\right)\left(x^{2}-c x+b\right)\left(x^{2}-d x+2 b\right)=0$ has
(1) 6 real roots
(2) At least 2 real roots
(3) 4 real roots
(4) 3 real roots
3. The value of $\int_{0}^{100 \pi}\left[\left[\cot ^{-1} x\right]+\left[\tan ^{-1} x\right]\right) d x$ is (where [.] denotes greatest integer function)
(1) $100 \pi+1 \cot 1$
(2) $100 \pi+2 \cot 2$
(3) $2 \cot 2$
(4) $100 \pi-2 \cot 2$
4. Let $f(x)=\int_{-2}^{x} e^{(1+t)^{2}} d t$ and $g(x)=f(h(x))$ where $h(x)$ is defined for all $x \in R$. If $g^{\prime}(2)=e^{4}$ and $h^{\prime}(2)=1$ then absolute value of sum of all possible values of $h(2)$ is
(1) 2
(2) 3
(3) 4
(4) 0
5. $\sum_{\mathrm{j}=1}^{21} \mathrm{a}_{\mathrm{j}}=693$, where $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . . ., \mathrm{a}_{21}$ are in A.P., then $\sum_{i=0}^{10} a_{2 i+1}$ is
(1) 330
(2) 363
(3) 1386
(4) 333
6. $\int \frac{\sin 2 x}{\sin 5 x \sin 3 x} d x=$
(1) $\ell n \sin 3 x-\ell n \sin 5 x+c$
(2) $\frac{1}{3} \ln \sin 3 x+\frac{1}{5} \ln \sin 5 x+c$
(3) $\frac{1}{3} \ln \sin 3 x-\frac{1}{5} \ell n \sin 5 x=c$
(4) $3 \ell n \sin 3 x-5 \ell n \sin 5 x+c$
7. The general solution of differential equation $\left(x^{6} y^{4}+x^{2}\right) d y=\left(1-x^{5} y^{5}-x y\right) d x$, is
(1) $\ln |x|=x y+\frac{x^{4} y^{4}}{4}+C$
(2) $\ln |y|=x y+\frac{x^{4} y^{4}}{4}+C$
(3) $\ln |x|=x y+\frac{x^{5} y^{5}}{5}+C$
(4) $\ln |y|=x y+\frac{x^{5} y^{5}}{5}+C$
8. A spherical acetone drop evaporates at a rate proportional to its surface area at that instant. The radius of this drop initially is 3 mm and after one hour it is found to be 2 mm . If $r(t)$ represents radius of the drop at time ' t ', Then
(1) $r(t)=3-t$
(2) $r(t)=t-3$
(3) $r(t)=3+t^{2}-2 t$
(4) $r(t)=3-t^{3}$
9. If $x_{1}, x_{2}, x_{3}, \ldots, x_{2008}$ are in HP and $\sum_{i=1}^{2007} x_{i} x_{i+1}=\lambda x_{1} x_{2008}$, then λ is
(1) 2008
(2) 1998
(3) 1863
(4) 2007
10. $\lim _{h \rightarrow 0} \frac{1}{h}\left[\int_{a}^{x+h} \sin ^{4} t d t-\int_{a}^{x} \sin ^{4} t d t\right]=$
(1) $\sin ^{4} x$
(2) $4 \sin ^{3} x \cos x$
(3) 0
(4) $\frac{\sin ^{5} x}{5}$
11. If α, β be the roots of $x^{2}-x-1=0$ and $A_{n}=\alpha^{n}+\beta^{n}$, then A.M. of A_{n-1} and A_{n} is
(1) $2 A_{n+1}$
(2) $(1 / 2) A_{n+1}$
(3) $2 A_{n-2}$
(4) $\frac{1}{2}\left(A_{n-2}\right)$
12. Solution of the differential equation
$\left(2 x-10 y^{3}\right) \frac{d y}{d x}+y=0$ is
(1) $\left(x-2 y^{3}\right) \cdot y^{2}=c$
(2) $\left(x-\frac{2 y^{3}}{5}\right) y^{2}=c$
(3) $\left(x+2 y^{3}\right) \cdot y^{2}=c$
(4) $\left(x+\frac{2 y^{3}}{5}\right) y^{2}=c$
13. If $2^{\text {nd }}, 5^{\text {th }}$, and $9^{\text {th }}$ terms of an A.P. are in G.P., then the sum of all possible ratios of the first term to the common difference of A.P.
(1) $\frac{9}{8}$
(2) 9
(3) 8
(4) 1
14. If α, β are the roots of the equation
$a x^{2}+b x+c=0$, then $\frac{\alpha}{a \beta+b}+\frac{\beta}{a \alpha+b}=$
(1) $\frac{2}{c}$
(2) $-\frac{2}{a}$
(3) $\frac{2}{a}$
(4) $\frac{2}{b}$
15. Let $S_{1}, S_{2}, \ldots . . . S_{n}$ be squares such that for each $n \geq 1$, the length of a side of S_{n} equals the length of a diagonal of S_{n+1}. If the length of a side of S_{1} is 10 cm , then for which of the following values of n is the area of S_{n} less than 1 sq. cm ?
(1) 7
(2) 8
(3) 6
(4) 5
16. The sum to n terms of the series
$11+103+1005+$ \qquad is
(1) $\frac{1}{9}(10 n-1)+n^{2}$
(2) $\frac{1}{9}\left(10^{n}-1\right)+2 n$
(3) $\frac{10}{9}\left(10^{n}-1\right)+n^{2}$
(4) $\frac{10}{9}\left(10^{n}-1\right)+2 n$
17. The value of the integral $\int_{-\pi / 2}^{\pi / 2} \log \left(\frac{a-\sin \theta}{a+\sin \theta}\right) \mathrm{d} \theta$, $a>1$ is -
(1) 0
(2) 1
(3) 2
(4) -2
18. The set of values of p for which both the roots of the quadratic equation,
$4 x^{2}-20 p x+\left(25 p^{2}+15 p-66\right)=0$ are less than 2 will be
(1) $(4 / 5,2)$
(2) $(2, \infty)$
(3) $(-1,4 / 5)$
(4) $(-\infty,-1)$
19. Find the area covered by the curve
$y=\max .\{2-x, 2,1+x\}$ with x-axis from $x=-1$ to $x=1$ is
(1) $1 / 2$
(2) $5 / 2$
(3) $7 / 2$
(4) $9 / 2$
20. The value of $\int_{0}^{\pi / 2} x \cot x d x$ is
(1) $\pi \ell n 2$
(2) $-\pi \ell n 2$
(3) $(\pi \ell n 2) / 2$
(4) $2 \pi \ell \mathrm{ln} 2$
21. The degree and order of differential equation of family of all parabolas whose axis is x -axis are respectively
(1) 1,2
(2) 2,1
(3) 1,1
(4) 2, 2
22. The area bounded by parabola $y^{2}=x$, straight line $y=4$ and y-axis is
(1) $\frac{16}{3}$
(2) $\frac{64}{3}$
(3) $7 \sqrt{2}$
(4) $\frac{32}{3}$
23. The ratio in which the area bounded by the curves $y^{2}=12 x$ and $x^{2}=12 y$ is divided by the line $x=3$ is
(1) $15: 49$
(2) $13: 480$
(3) $13: 37$
(4) $1: 1$
24. The value of $\int_{0}^{\infty} f\left(x^{n}+x^{-n}\right) \log x \frac{d x}{x}$ is
(1) ∞
(2) 1
(3) -1
(4) 0

SECTION - II

Comprehension Type

This section contains 3 paragraphs. Based open each paragraph, there are 2 questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Paragraph for Question Nos. 25 to 26

If $S=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=0}^{k n} f\left(\frac{r}{n}\right)$, (for $k \in N$), then
$S=\int_{0}^{k} f(x) d x$. In this process $\frac{r}{n}$ transforms to x, \sum transforms to \int and $\frac{1}{\mathrm{n}}$ transforms to dx .
25. $\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sin ^{2} \frac{\pi}{2 n}+\sin ^{2} \frac{2 \pi}{2 n}+\ldots \ldots+\sin ^{2} \frac{n \pi}{2 n}\right)$ is equal to
(1) $\frac{2}{\pi}$
(2) $\frac{\pi}{2}$
(3) $\frac{1}{2}$
(4) 1
26. $\lim _{n \rightarrow \infty} \frac{1}{n^{4}}\left(\left(n^{2}+1^{2}\right)\left(n^{2}+2^{2}\right)\left(n^{2}+3^{2}\right) \ldots \ldots\left(n^{2}+4 n^{2}\right)\right)^{1 / n}$ is equal to
(1) 2 en $5+2\left(\tan ^{-1} 2\right)-4$
(2) $\frac{25 e^{2 \tan ^{-1} 2}}{e^{4}}$
(3) $\frac{\pi}{2}+(\ell n 2)-2$
(4) $\frac{2 e^{\pi / 2}}{e^{2}}$
(2) $x^{4}+y^{4}+3 x^{2} y^{2}=c$
(3) $x^{4}+y^{4}+6 x^{2} y^{2}=c$
(4) $x^{4}+y^{4}+9 x^{2} y^{2}=c$

Paragraph for Question Nos. 27 to 28
A differential equation of the form
$\frac{d y}{d x}=\frac{f(x, y)}{g(x, y)}$ where f and g are homogeneous function of x and y, and of the same degree, is called homogeneous differential equaiton and can be solved easily by putting $y=v x$.
27. The solution of the differential equation
$\frac{d y}{d x}=\frac{x^{2}+x y+y^{2}}{x^{2}}$ is
(1) $\tan ^{-1}\left(\frac{x}{y}\right)=$ eny $+c$
(2) $\tan ^{-1}\left(\frac{y}{x}\right)=$ eny $+c$
(3) $\tan ^{-1}\left(\frac{y}{x}\right)=\ell n x+c$
(4) $\sin ^{-1}\left(\frac{y}{x}\right)=\ell n x+c$
28. The solution of the differential equation, $\frac{d y}{d x}+\frac{x\left(x^{2}+3 y^{2}\right)}{y\left(y^{2}+3 x^{2}\right)}=0$ is
(1) $x^{4}+y^{4}+x^{2} y^{2}=c$

Paragraph for Question Nos. 29 to 30

We are giving the concept of arithmetic mean of $\mathrm{m}^{\text {th }}$ power. Let $\mathrm{a}, \mathrm{b}>0$ and $\mathrm{a} \neq \mathrm{b}$ and let m be a real number. Then
$\frac{a^{m}+b^{m}}{2}>\left(\frac{a+b}{2}\right)^{m}$, if $m \in R \sim[0,1]$
However if $m \in(0,1)$, then
$\frac{a^{m}+b^{m}}{2}<\left(\frac{a+b}{2}\right)^{m}$
Obviously if $m \in\{0,1\}$, then
$\frac{a^{m}+b^{m}}{2}=\left(\frac{a+b}{2}\right)^{m}$
If $\mathrm{a}=\mathrm{b}$ then equality comes in all cases.
On the basis of above information, answer the following questions :
29. If a, b be positive and $a+b=1(a \neq b)$ and If $A=\sqrt[3]{a}+\sqrt[3]{b}$ then the correct statement is
(1) $A>2^{2 / 3}$
(2) $A=\frac{2^{2 / 3}}{3}$
(3) $A<2^{2 / 3}$
(4) $A=2^{2 / 3}$
30. If x, y be positive real numbers such that $x^{2}+y^{2}=8$, then the maximum value of $x+y$ is
(1) 2
(2) 4
(3) 6
(4) 8

PART-B

SECTION - I

Straight Objective Type

This section contains 24 multiple choice questions. Each question has choices (1), (2), (3) and (4) out of which ONLY ONE is correct.

1. In a Kundt's tube distance between two consecutive heap is $\Delta \ell$ for air, while it is increased by 50% for a gas in the same tube with same resonite if speed of sound in air is
$\frac{1000}{3} \mathrm{~m} / \mathrm{s}^{-1}$ then speed of sound in gas at same temperature :

(1) $1500 \mathrm{~m} / \mathrm{s}$
(2) $500 \mathrm{~m} / \mathrm{s}$
(3) $1000 \mathrm{~m} / \mathrm{s}$
(4) To calculate speed in gas degree of freedom and molecular mass of the gas is required
2. An N-P-N transistor is connected in common emitter configuration in which collector supply is 9 V and the voltage drop across the load resistance of 1000Ω connected in the collector circuit is 1 V . If current amplification factor is ($25 / 26$), If the internal resistance of the transistor is 200Ω, then which of the following options is incorrect :

(1) $\mathrm{V}_{\mathrm{CE}}=8 \mathrm{~V}$
(2) collector current is 1.0 mA
(3) voltage gain $\frac{50}{23}$, and power gain is 4.6
(4) emitter current is 2.04 mA
3. A piece of iron is heated in a flame. It first becomes dull red then becomes reddish yellow and finally turns to white hot. The correct explanation for the above observation is possible by using :
(1) Wein's displacement Law
(2) Kirchoff's Law
(3) Newton's Law of cooling
(4) Stefan's Law
4. In a common emitter (CE) amplifier having a voltage gain G, the transistor used has transconductance 0.03 mho and current gain 25. If the above transistor is replaced with another one with transconductance 0.02 mho and current gain 20 , the voltage gain will be :
(1) 1.5 G
(2) $\frac{1}{3} G$
(3) $\frac{5}{4} G$
(4) $\frac{2}{3} G$
5. If we study the vibration of a pipe open at both ends, then the following statement is not true:
(1) Fundamental frequency will be inversely proportional to the length of pipe
(2) All harmonics of the fundamental frequency will be generated
(3) Pressure change will be maximum at both ends
(4) Open end will be displacement antinode
6. If photon of energy E and an electron have same energy E (kinetic energy), and De-Broglie wavelength of an electron is λ_{e} and De-Broglie wavelength of photon is λ_{P}. Then correct relation between λ_{e} and λ_{P} is :
(1) $\lambda_{\mathrm{P}} \propto \lambda_{\mathrm{e}}$
(2) $\lambda_{P} \propto \sqrt{\lambda_{e}}$
(3) $\lambda_{P} \propto \frac{1}{\sqrt{\lambda_{e}}}$
(4) $\lambda_{P} \propto \lambda_{e}{ }^{2}$
7. The half life of a radioactive isotope ' X ' is 20 years. It decays into another stable element ' Y '. The two elements ' X ' and ' Y ' were found to be in the ratio $1: 7$ in a sample of a given rock. Then age of the rock is estimated to be :
(1) 60 years
(2) 80 years
(3) 100 years
(4) 40 years
8. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its temperature. The ratio of $\frac{C_{p}}{C_{v}}$ for the gas is :
(1) 2
(2) $\frac{5}{3}$
(3) $\frac{3}{2}$
(4) $\frac{4}{3}$
9. Vernier constant of the Vernier callipers is :
(1) least count of Vernier callipers
(2) value of 1 division of main scale
(3) value of 1 division of vernier scale
(4) None of these
10. The output (X) of the logic circuit shown in figure will be :

(1) $X=\overline{A \cdot B}$
(2) $X=A \cdot B$
(3) $X=\overline{A+B}$
(4) $2 \mathrm{X}=\overline{\mathrm{A} \cdot \mathrm{B}}$
11. A slab of stone of area $0.36 \mathrm{~m}^{2}$ and thickness 0.1 m is exposed on the lower surface to steam at $100^{\circ} \mathrm{C}$. A block of ice at $0^{\circ} \mathrm{C}$ rests on the upper surface of the slab. In one hour 4.8 kg of ice is melted. The thermal conductivity of slab is approximately : (Given latent heat of fusion of ice $=3.36 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$)
(1) $1.24 \mathrm{~J} / \mathrm{m} / \mathrm{s} /{ }^{\circ} \mathrm{C}$
(2) $1.29 \mathrm{~J} / \mathrm{m} / \mathrm{s} /{ }^{\circ} \mathrm{C}$
(3) $2.05 \mathrm{~J} / \mathrm{m} / \mathrm{s} /{ }^{\circ} \mathrm{C}$
(4) $1.02 \mathrm{~J} / \mathrm{m} / \mathrm{s} /{ }^{\circ} \mathrm{C}$
12. An ideal gas goes from state A to state B via three different processes as indicated in the P-V diagram :

If Q_{1}, Q_{2}, Q_{3} indicate the heat a absorbed by the gas along the three processes and $\Delta \mathrm{U}_{1}, \Delta \mathrm{U}_{2}$, $\Delta \mathrm{U}_{3}$ indicate the change in internal energy along the three processes respectively, then
(1) $Q_{1}>Q_{2}>Q_{3}$ and $\Delta U_{1}=\Delta U_{2}=\Delta U_{3}$
(2) $Q_{3}>Q_{2}>Q_{1}$ and $\Delta U_{1}=\Delta \mathrm{U}_{2}=\Delta \mathrm{U}_{3}$
(3) $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}$ and $\Delta \mathrm{U}_{1}>\Delta \mathrm{U}_{2}>\Delta \mathrm{U}_{3}$
(4) $Q_{3}>Q_{2}>Q_{1}$ and $\Delta \mathrm{U}_{1}>\Delta \mathrm{U}_{2}>\Delta \mathrm{U}_{3}$
13. The equation of a simple harmonic wave is given by

$$
y=3 \sin \frac{\pi}{2}(50 t-x)
$$

Where x and y are in meters and t is in seconds. The ratio of maximum particle velocity to the wave velocity is
(1) 2π
(2) $\frac{3}{2} \pi$
(3) 3π
(4) $\frac{2}{3} \pi$
14. The input resistance of a silicon transistor is 100Ω. Base current is changed by $40 \mu \mathrm{~A}$ which results in a change in collector current by 2 mA . This transistor is used as a common emitter amplifier with a load resistance of $4 \mathrm{~K} \Omega$. The voltage gain of the amplifier is :
(1) 2000
(2) 3000
(3) 4000
(4) 1000
15. Figure shows isosceles triangle frame $A B C$ of two different material shown in figure. Thermal expansion cofficient of the rod ADB is α_{1} and for rod ACB is α_{2}. End C is fixed and whole system is placed on smooth horizontal surface and D is midpoint of $\operatorname{rod} A B$ and $C D$ is perpendicular to the $A B$. If temperature of the system is increase such as it is found that distance CD remain fixed then.

Smooth \& horizontal surface
(1) $\frac{\ell_{1}}{\ell_{2}}=2 \sqrt{\frac{\alpha_{2}}{\alpha_{1}}}$
(2) $\frac{\ell_{1}}{\ell_{2}}=2 \sqrt{\frac{\alpha_{1}}{\alpha_{2}}}$
(3) $\frac{\ell_{1}}{\ell_{2}}=\sqrt{\frac{\alpha_{1}}{\alpha_{2}}}$
(4) $\frac{\ell_{1}}{\ell_{2}}=\sqrt{\frac{\alpha_{2}}{\alpha_{1}}}$
16. The positron is the anti-matter counterpart of the electron. It has the same mass as an electron but the opposite charge. A photon is a particle of light. It has no charge, but has non-zero energy and momentum, proportional to the lights frequency. Away from all other matter an electron and positron moving towards each other with equal and opposite velocities.
(1) can annihilate into one photon, conserving both energy and momentum.
(2) can annihilate into one photon because energy and momentum are not conserved in quantum mechanics.
(3) cannot annihilate into one photon because energy cannot be conserved.
(4) cannot annihilate into one photon because momentum cannot be conserved.
17. If refractive index and dielectric constant of the material of a glass slab is $\frac{3}{2}$ and 3 respectively then magnetic permeability of the glass is (In SI system)
(1) 5.32×10^{-7}
(2) 3.94×10^{-7}
(3) 10^{-7}
(4) 9.42×10^{-7}
18. Choose the correct statements from the following
(1) Good reflectors are good emitters of thermal radiations
(2) Burns caused by water at $100^{\circ} \mathrm{C}$ are more severe than those caused by steam at $100^{\circ} \mathrm{C}$.
(3) All bodies emit thermal radiations at all temperatures greater than 0 K .
(4) It is possible to construct a heat engine of 100% efficiency.
19. In a decay process A decays to B,

$$
A \longrightarrow B
$$

Two graphs of number of nucli of A and B versus time is given then, which of the following options is incorrect :

(1) $t_{2}-t_{1}=4$
(2) $t_{2}-t_{1}=2$
(3) $t_{1}=2 \log _{2} 5$
(4) $t_{2}=\log _{2} 100$
20. Select correct statement regarding waves on a string [all symbols have their usual meanings] :
(1) Power transfer through any point in standing wave is $\mu \vee V_{p}{ }^{2}$
(2) Energy is not conserve between consecutive node and antinode
(3) Two travelling waves of same frequency which are moving in opposite direction must form standing wave.
(4) Speed of particle in travelling wave is maximum where slope is maximum
21. A source emit sound waves of frequency 1000 Hz . The source moves to the right with a speed of $32 \mathrm{~m} / \mathrm{s}$ relative to ground. On the right a reflecting surface moves towards left with a speed of $64 \mathrm{~m} / \mathrm{s}$ relative to ground. The speed of sound in air is $332 \mathrm{~m} / \mathrm{s}$, then which of the following options is incorrect :
(1) wavelength of sound in ahead of source is 0.3 m
(2) number of waves arriving per second which meets the reflected surface is 1320
(3) speed of reflected wave is $268 \mathrm{~m} / \mathrm{s}$
(4) wavelength of reflected waves is nearly 0.2 m
22. $\mathrm{p}=\frac{\mathrm{a}-\mathrm{t}^{2}}{\mathrm{bx}}$:
$\mathrm{p}=$ pressure
$\mathrm{x}=$ distance
$\mathrm{t}=$ time
find the dimensions of $\frac{a}{b}$:
(1) $\left[\mathrm{M}^{2} \mathrm{LT}^{-3}\right]$
(2) $\left[\mathrm{M} \mathrm{T}^{-2}\right]$
(3) $\left[\mathrm{M} \mathrm{L}^{3} \mathrm{~T}^{-1}\right]$
(4) $\left[\mathrm{L} \mathrm{T}^{-3}\right]$
23. Two longitudinal sinusoidal pressure waves one having lower frequency of 2 Hz \& both travelling in same direction through the same medium as shown in figure are superimposed. Then the difference in frequency of the two waves is -

(1) 1 Hz
(2) 2 Hz
(3) 3 Hz
(4) 4 Hz
24. Three samples of a radioactive substance have activity in a ratio 2:5:7, then after two half lives the ratio of their activities will be :
(1) $2: 5: 7$
(2) $1: 3: 5$
(3) $7: 5: 2$
(4) data insufficient

SECTION - II

Comprehension Type

This section contains 3 paragraphs. Based open each paragraph, there are 2 questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Paragraph for Question Nos. 25 to 26

A U-tube, open from both the ends, contains two arms, arm-1 and arm-2 each of having equal cross-section and height of each arm is 1 m . Water of density ρ_{w} and an unknown liquid of density ρ is filled as shown.

A tuning fork of frequency 300 Hz is vibrated on arm-1, then a loud sound of fundamental tone is produced. If the same tuning fork is vibrated on arm-2, again a loud sound of 1 st overtone is produced. ($\mathrm{V}_{\text {sound }}=300 \mathrm{~m} / \mathrm{sec} ., \mathrm{g}=10 \mathrm{~m} / \mathrm{sec}^{2}$, density of water $\rho_{w}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, atmospheric pressure $=10^{5} \mathrm{~Pa}$). Neglect the effect of surface tension and end correction.
25. Density of the unknown liquid (ρ) is :
(1) $2 \rho_{w}$
(2) $2.5 \rho_{\mathrm{w}}$
(3) $3 \rho_{w}$
(4) $3.5 \rho_{\mathrm{w}}$
26. Now we use a tuning fork of frequency 302 Hz , instead of 300 Hz , with how much velocity should we move the tuning fork, so that resonance is created with the air column in any arm ?
(1) $2 \mathrm{~m} / \mathrm{sec}$. towards the tube
(2) $2 \mathrm{~m} / \mathrm{sec}$. away from the tube
(3) $4 \mathrm{~m} / \mathrm{sec}$. towards the tube
(4) $4 \mathrm{~m} / \mathrm{sec}$. away from the tube

Paragraph for Question Nos. 27 to 28
A message signal of 12 kHz and peak voltage 20 V is used to modulate a carrier wave of frequency 12 MHz and peak voltage 30 V . Then using the above information answer the following questions :
27. The modulation index in the given amplitude modulation is :
(1) $1 / 5$
(2) $2 / 3$
(3) $3 / 2$
(4) 1
28. The lower side band (LSB) frequency of modulated wave is :
(1) 11 MHz to 12 MHz
(2) 10 MHz to 12 MHz
(3) 12.012 MHz to 12 MHz
(4) 11.988 MHz to 12 kHz

Paragraph for Question Nos. 29 to 30

Two coherent point sound sources S_{1} and S_{2} are placed as shown in the figure. Both are emitting sound of frequency 165 Hz . S_{1} is ahead of S_{2} in phase by π-radian. (Speed of sound is $330 \mathrm{~m} / \mathrm{s}$)

29. How many times maximum sound can be observed on line AB :
(1) 7
(2) 6
(3) 5
(4) None of these
30. If power of sources are same and equal to 7200π watt. Resultant intensity (in watt $/ \mathrm{m}^{2}$) at point B will be :
(1) $(\sqrt{50}-\sqrt{18})^{2}$
(2) $(\sqrt{30}-\sqrt{18})^{2}$
(3) $(\sqrt{50}+\sqrt{18})^{2}$
(4) None of these

PART- C

Atomic masses : $[\mathrm{H}=1, \mathrm{D}=2, \mathrm{Li}=7, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{~F}=19, \mathrm{Na}=23, \mathrm{Mg}=24$, $\mathrm{Al}=27, \mathrm{Si}=28, \mathrm{P}=31, \mathrm{~S}=32, \mathrm{Cl}=35.5, \mathrm{~K}=39, \mathrm{Ca}=40, \mathrm{Cr}=52, \mathrm{Mn}=55, \mathrm{Fe}=56, \mathrm{Cu}=63.5$, $\mathrm{Zn}=65, \mathrm{As}=75, \mathrm{Br}=80, \mathrm{Ag}=108, \mathrm{I}=127, \mathrm{Ba}=137, \mathrm{Hg}=200, \mathrm{~Pb}=207]$

SECTION - I

Straight Objective Type

This section contains 30 questions. Each question has five choices (1), (2), (3), and (4) for its answer, out of which ONLY ONE is correct.

1. Which of the following MO has lowest energy for B_{2} molecule ?
(1) $\sigma 2 p_{x}$
(2) $\sigma^{*} 2 p_{x}$
(3) $\pi 2 p_{y}$
(4) $\pi^{*} 2 p_{y}$
2. Unequal bond lengths are present in :
(1) BF_{3}
(2) $\mathrm{CO}_{3}{ }^{2-}$ (present in CaCO_{3})
(3) HNO_{3}
(4) $\mathrm{SO}_{4}{ }^{2-}$
3. In which of the following species, each atom carries same number of lone pair of electrons on it?
(1) $\mathrm{XeO}_{4}{ }^{2-}$
(2) XeF_{2}
(3) $\mathrm{XeO}_{6}{ }^{4}$
(4) O_{3}
4. Which of the following has been named correctly?
(1) $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ thiosulphite ion
(2) N_{3} - nitride ion
(3) HAsO_{3}^{-2} monohydrogenarsenite ion
(4) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$dihydrogenphosphite ion
5. The oxide of an element which is stored under water and which exhibits allotropy is a powerful
(1) dehydrating agent
(2) reducing agent
(3) Fumigant
(4) Oxidizing agent
6. Which of the following statements is INCORRECT ?
(1) Complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Br}_{2}$ can show both hydrate as well as ionization isomerism.
(2) Complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{NO}_{3}\right)_{3}$ can show hydrate isomerism.
(3) Complex $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCl}_{6}\right]$ cannot show coordination isomerism.
(4) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right) \mathrm{Cl}\right] \mathrm{Cl}$ can show both ionization as well as linkage isomerism.
7. Usually a disilicate share only one oxygen of silicate unit. But if in the disilicate, two O atoms are shared, then formula of its salt with potassium is :
(1) $\mathrm{K}_{6} \mathrm{Si}_{2} \mathrm{O}_{7}$
(2) $\mathrm{K}_{4} \mathrm{Si}_{2} \mathrm{O}_{6}$
(3) $\mathrm{K}_{2} \mathrm{Si}_{2} \mathrm{O}_{6}$
(4) $\mathrm{K}_{8} \mathrm{Si}_{2} \mathrm{O}_{8}$
8. Bubbling CO_{2} through which of the following will produce a white precipitate :
(1) NaAlO_{2}
(2) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(3) NaOH
(4) MgSO_{4}
9. When conc. HNO_{3} is treated with $\mathrm{P}_{4} \mathrm{O}_{10}$ it forms
(1) $\mathrm{N}_{2} \mathrm{O}$
(2) NO
(3) NO_{2}
(4) $\mathrm{N}_{2} \mathrm{O}_{5}$
10. Which is not correctly matched ?
(1) Basic strength of oxides
$\mathrm{Cs}_{2} \mathrm{O}<\mathrm{Rb}_{2} \mathrm{O}<\mathrm{K}_{2} \mathrm{O}<\mathrm{Na}_{2} \mathrm{O}<\mathrm{Li}_{2} \mathrm{O}$
(2) Stability of peroxides
$\mathrm{Na}_{2} \mathrm{O}_{2}<\mathrm{K}_{2} \mathrm{O}_{2}<\mathrm{Rb}_{2} \mathrm{O}_{2}<\mathrm{Cs}_{2} \mathrm{O}_{2}$
(3) Stability of bicarbonates
$\mathrm{LiHCO}_{3}<\mathrm{NaHCO}_{3}<\mathrm{KHCO}_{3}<\mathrm{RbHCO}_{3}<$ CsHCO_{3}
(4) Melting point
$\mathrm{NaF}<\mathrm{NaCl}<\mathrm{NaBr}<\mathrm{Nal}$
(1) 1 and 4
(2) 1 and 3
(3) 1 and 2
(4) 2 and 3
11. A substance X when heated with Y produces residue and odourless, gas which turns lime water milky. The silver nitrate is added to residue yellow precipitate is formed. X and Y could be
X Y
X $\quad \mathbf{Y}$
(1) $\mathrm{MnO}_{2} \mathrm{~S}$
(2) $\mathrm{NaBrO}_{3} \mathrm{C}$
(3) KI S
(4) $\mathrm{Na}_{2} \mathrm{SO}_{4} \quad \mathrm{C}$
12. An aqueous solution contains $\mathrm{Al}^{3+} \& \mathrm{Zn}^{2+}$ both. To this solution $\mathrm{NH}_{4} \mathrm{OH}$ is added in excess.
(1) only $\mathrm{Al}(\mathrm{OH})_{3}$ will be precipitated
(2) only $\mathrm{Zn}(\mathrm{OH})_{2}$ will be precipitated
(3) both will be precipitated
(4) no precipitate will appear
13. (I) When copper ore is mixed with silica, in a reverberatory furnace copper matte is produced. The copper matte contains sulphides of copper (II) and iron (II).
(II) Zone refining is based on the principle that impurities are more soluble in molten metal than in solid metal.
(III) In the metallurgy of aluminium, graphite anode is oxidised to carbon monoxide and carbon dioxide.
Correct statements amongs the following are-
(1) I, II
(2) II, III
(3) I, III
(4) I, II
14. Among the following statements which is INCORRECT :
(1) In the preparation of compounds of Xe , Bartlett had taken $\mathrm{O}_{2} \mathrm{PtF}_{6}$ as a base compound because both O_{2} and Xe have almost same ionisation enthalpy.
(2) Nitrogen does not show allotropy.
(3) A brown ring is formed in the ring test for NO_{3}^{-}ion. It is due to the formation of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{NO})\right]^{2+}$
(4)On heating with concentrated NaOH solution in an inert atmosphere of CO_{2}, red phosphorus gives PH_{3} gas.
15. Which of the following statement is incorrect.
(1) Be dissolves in alkali forming $\left[\mathrm{Be}(\mathrm{OH})_{4}\right.$ $]^{-2}$
(2) LiCl is soluble in pyridine.
(3) Alkaline earth metal Ion, because of their much larger charge to size ratio exert a much stronger electrostatic attraction on the oxygen of water molecule surrounding them.
(4) BeF_{2} form complex ion with NaF in which Be goes with cation.
16. (I) $\mathrm{V}_{2} \mathrm{O}_{5}, \mathrm{Cr}_{2} \mathrm{O}_{3}$ are amphoteric oxides.
(II) Interstitial compounds are very reactive
(III) In its higher oxidation states, manganese forms stable compounds with oxygen and fluorine.
Correct statements amongs the following are-
(1) I, II
(2) II, III
(3) I, III
(4) I, II
17. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ Sodium thiosulphate is used in photography to :
(1) remove reduced silver
(2) remove undecomposed AgBr as soluble silver thiosulphate complex
(3) convert the metallic silver to silver salt
(4) reduce the silver bromide grains to metallic silver
18. $\mathrm{H}_{2} \mathrm{~S}$ reacts with lead acetate forming a black compound which reacts with $\mathrm{H}_{2} \mathrm{O}_{2}$ to form another compound. The colour of the compound is :
(1) pink
(2) black
(3) yellow
(4) white
19. (I) $\left[\mathrm{MnCl}_{6}\right]^{3-},\left[\mathrm{FeF}_{6}\right]^{3-}$ and $\left[\mathrm{CoF}_{6}\right]^{3-}$ are paramagnetic having four, five and four unpaired electrons respectively.
(II) Valence bond theory gives a quantitative interpretation of the thermodynamic stabilities of coordination compounds.
(III) The crystal field splitting Δ_{0}, depends upon the field produced by the ligand and charge on the metal ion.

Amongs the following correct statements are :
(1) I, II
(2) I, III
(3) I, II, III
(4) II, III
20. When $[\mathrm{K}]^{+}\left[\mathrm{AgF}_{4}\right]$] is reacted with BF_{3} a red solid is formed. This red solid on reaction with Xe forms a brown solid and a fluoride of Xenon. This fluoride is
(1) XeF_{2}
(2) XeF_{4}
(3) XeF_{6}
(4) XeF_{8}
21. Which of the following ions does not have S-S linkage?
(1) $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$
(2) $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
(3) $\mathrm{S}_{2} \mathrm{O}_{5}^{2-}$
(4) $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
22. Which of the following statement(s) is/are correct?
(1) Chlorine dioxide $\left(\mathrm{ClO}_{2}\right)$ is powerful oxidising agent but bleaching action is lower than Cl_{2}
(2) ClO_{2} in alkaline solution undergoes disproportionation.
(3) SF_{4} has a square planar shape with S having two lone pair of electrons.
(4) Sulphur tetrafluoride hydrolysed by water to give SO_{2} and HF
23. $\mathrm{Fe}^{3+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} \longrightarrow \mathrm{X} \xrightarrow{\mathrm{H}_{2} \mathrm{O}_{2} \text { Solution }} \mathrm{Z}$ SnCl_{2} Solution Y
Correct observation is
(1) X : White Y and Z are same (blue)
(2) X : Brown Y and Z are same (blue)
(3) X : Brown Y is blue, Z white
(4) X : White Y is brown, Z white
24. Which one is incorrect statement among the following?
(1) $\mathrm{PH}_{5}, \mathrm{SCl}_{6}$ and FCl_{3} do not exist.
(2) $\mathrm{p} \pi-\mathrm{d} \pi$ bond is present in SO_{2} molecule.
(3) $12 \mathrm{P}-\mathrm{O}$ bonds are present in $\mathrm{P}_{4} \mathrm{O}_{6}$ molecule.
(4) Bond angle in SiH_{4} less than that in CH_{4}.
25. (I) [Co(EDTA)] - has two optical isomers.
(II) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$show linkage isomers.
(III) For [Pt (py) $\left.\left(\mathrm{NH}_{3}\right)\left(\mathrm{NO}_{2}\right) \mathrm{Cl} \mathrm{BrI}\right]$, theoretically fifteen different geometrical isomers are possible.
(IV) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ can show hydrate as well as ionisation isomerism.

Amongs the following correct statements are :
(1) II, III
(2) III
(3) I, III
(4) I, II \& III
26. Identify the least stable ion amongst the following :
(1) Ne^{-}
(2) F^{-}
(3) B^{-}
(4) C^{-}
27. When haematite ore is burnt in air with coke along with lime at $200^{\circ} \mathrm{C}$, the process not only produces steel but also produces an important compound (A), which is useful in making building materials. The compound (A) is -
(1) SiO_{2}
(2) CaSiO_{3}
(3) FeO
(4) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
28. Which of the following is the correct order of ionisation energy :
(1) $\mathrm{Be}^{+}>\mathrm{Be}$
(2) $\mathrm{Be}>\mathrm{Be}^{+}$
(3) $\mathrm{C}>\mathrm{Be}$
(4) $\mathrm{B}>\mathrm{Be}$
(1) 2,3
(2) 3,4
(3) 1,3
(4) None of these
29. In which of the following complex ion, the metal ion will have $\mathrm{t}_{2 \mathrm{~g}}^{6}, \mathrm{e}_{\mathrm{g}}^{0}$ configuration according to CFT:
(1) $\left[\mathrm{FeF}_{6}\right]^{3-}$
(2) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
(3) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(4) None of these
30. Ammonia, on reaction with hypochlorite anion can form :
(1) NO
(2) $\mathrm{NH}_{4} \mathrm{Cl}$
(3) $\mathrm{N}_{2} \mathrm{H}_{4}$
(4) HNO_{2}

ANSWER KEY

MATHEMATICS		PHYSICS		CHEMISTRY	
1	1	1	2	1	3
2	2	2	3	2	3
3	2	3	1	3	2
4	1	4	4	4	3
5	2	5	3	5	1
6	3	6	4	6	3
7	3	7	1	7	2
8	1	8	3	8	1
9	4	9	1	9	4
10	1	10	2	10	1
11	2	11	1	11	2
12	1	12	1	12	1
13	3	13	2	13	2
14	2	14	1	14	4
15	2	15	1	15	4
16	3	16	4	16	3
17	1	17	4	17	2
18	4	18	3	18	4
19	4	19	1	19	2
20	3	20	4	20	1
21	1	21	3	21	1
22	2	22	2	22	2
23	1	23	4	23	2
24	4	24	1	24	4
25	3	25	3	25	4
26	2	26	2	26	1
27	3	27	2	27	2
28	3	28	4	28	3
29	3	29	2	29	3
30	2	30	1	30	3

HINTS \& SOLUTIONS

PART- A
 MATHEMATICS

1. The area bounded by the. \qquad
Sol. (1)
The required area

$=$ area of $\Delta A O B-\int_{0}^{1}(1-\sqrt{x})^{2} d x$
$=\frac{1}{2}-\left(x+\frac{x^{2}}{2}-2 \frac{x^{3 / 2}}{3 / 2}\right)_{0}^{1}=\frac{1}{2}-\frac{1}{6}=\frac{1}{3}$
2. If $a, b, c, d \in R$ then \qquad
Sol. (2)
The discriminants of the given equation are, $D_{1}=a^{2}+12 b$; $D_{2}=c^{2}-4 b$ and $D_{3}=d^{2}-8 b$
$\therefore \mathrm{D}_{1}+\mathrm{D}_{2}+\mathrm{D}_{3}=\mathrm{a}^{2}+\mathrm{c}^{2}+\mathrm{d}^{2} \geq 0$
\Rightarrow At least one of D_{1}, D_{2}, D_{3} is non-negative
Hence, the equation has at least two real roots.
3. The value of $\int_{0}^{100}\left(\left[\cot ^{-1} x\right]+\left[\tan ^{-1} x\right]\right)$ \qquad

Sol. (2)

$\int_{0}^{100 \pi}\left(\left[\cot ^{-1} x\right]+\left[\tan ^{-1} x\right]\right) d x=\cot 1+(100 \pi-\tan 1)$
$=100 \pi+\frac{1-\tan ^{2} 1}{\tan 1}=100 \pi+2 \cot 2$
4. Let $f(x)=\int_{-2}^{x} e^{(1+t)^{2}} d t$ \qquad

Sol. (1) $g(x)=\int_{-2}^{h(x)} e^{(1+t)^{2}} d t \Rightarrow g^{\prime}(x)=h^{\prime}(x) \cdot e^{(1+h(x))^{2}}$

$$
\Rightarrow \mathrm{g}^{\prime}(2)=\mathrm{h}^{\prime}(2) \cdot \mathrm{e}^{(1+\mathrm{h}(2))^{2}}
$$

$$
\begin{aligned}
& \Rightarrow \mathrm{e}^{4}=1 \cdot \mathrm{e}^{(1+\mathrm{h}(2))^{2}} \\
& \Rightarrow 1+\mathrm{h}(2)= \pm 2 \\
& \Rightarrow \mathrm{~h}(2)=-3,1 \\
& \Rightarrow \text { sum }=-2 \Rightarrow \mid \text { sum } \mid=2
\end{aligned}
$$

5. $\sum_{j=1}^{21} a_{j}=693$, where

Sol. (2)

$$
\begin{aligned}
& \sum_{\mathrm{J}=1}^{21} \mathrm{a}_{\mathrm{j}}=693=\frac{21}{2}\left(a_{1}+a_{21}\right) \text {, therefore } a_{1}+a_{21}=66 \\
& \text { Now, } a_{11}=\text { A.M. }=693 / 21=33 \\
& \text { Also }, a_{2}+a_{20}=a_{3}+a_{19}=\ldots \ldots .=a_{9}+a_{13}=a_{10}+a_{12}=66
\end{aligned}
$$

$$
\therefore \sum_{i=0}^{10} a_{2 i+1}=5 \times\left(a_{1}+a_{21}\right)+a_{11}=5 \times 66+33=363
$$

6. $\int \frac{\sin 2 x}{\sin 5 x \sin 3 x} d x$ \qquad

Sol. (3)

$$
\begin{aligned}
& \int \frac{\sin 2 x}{\sin 5 x \sin 3 x} d x=\int \frac{\sin (5 x-3 x)}{\sin 5 x \sin 3 x} \\
& =\int \frac{\sin 5 x \cos 3 x-\cos 5 x \sin 3 x}{\sin 5 x \sin 3 x} \\
& =\frac{1}{3} \ln \sin 3 x-\frac{1}{5} \ln \sin 5 x=c
\end{aligned}
$$

7. The general solution

Sol. (3) $\left(x^{6} y^{4}+x^{2}\right) d y=\left(1-x^{5} y^{5}-x y\right) d x$
$x(x d y+y d x)-d x+x^{5} y^{4}(x d y+y d x)=0$
$\Rightarrow \frac{d x}{x}=\left(1+x^{4} y^{4}\right) d(x y)$
$\Rightarrow \ln |x|=x y+\frac{x^{5} y^{5}}{5}+C$
8. A spherical acetone \qquad
Sol. (1)

$$
\begin{aligned}
& \frac{d v}{d t}=\lambda .4 \pi r^{2} \quad \Rightarrow 3 \pi r^{2} \cdot \frac{d r}{d t}=\lambda .4 \pi r^{2} \\
& \Rightarrow \frac{d r}{d t}=\lambda=r=\lambda t+C
\end{aligned}
$$

We have $r_{0}=3$ and $r=2 \quad$ at $t=1$
$\Rightarrow C=3,2=\lambda+3 \Rightarrow r=3-t$
9. If $x_{1}, x_{2}, x_{3}, \ldots, x_{2008}$

Sol. (4)
Given $x_{1}, x_{2}, x_{3}, \ldots \ldots x_{2008}$ are in HP.

$$
\begin{aligned}
& \therefore \quad \frac{1}{x_{1}}, \frac{1}{x_{2}}, \frac{1}{x_{3}}, \ldots ., \frac{1}{x_{2007}}, \frac{1}{x_{2008}} \text { are in AP. } \\
& \text { Then }, \frac{1}{x_{2}}-\frac{1}{x_{1}}=\frac{1}{x_{3}}-\frac{1}{x_{2}}=\ldots .=\frac{1}{x_{2008}}-\frac{1}{x_{2007}}=D \\
& \text { or } \quad \frac{x_{1}-x_{2}}{x_{1} x_{2}}=\frac{x_{2}-x_{3}}{x_{2} x_{3}}=\ldots .=\frac{x_{2007}-x_{2008}}{x_{2007} x_{2008}}=D \\
& \quad=\frac{\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right)+\ldots+\left(x_{2007}-x_{2008}\right)}{x_{1} x_{2}+\ldots .+x_{2} x_{3}+\ldots+x_{2007} x_{2008}}=D
\end{aligned}
$$

(by law of proportion)
or $\quad x_{1} x_{2}+x_{2} x_{3}+\ldots+x_{2007} x_{2008}=\frac{x_{1}-x_{2008}}{D}$
or $\quad \sum_{i=1}^{2007} x_{i} x_{i-1}=\frac{x_{1}-x_{2008}}{D}$
Now, $\quad \frac{1}{x_{2008}}=\frac{1}{x_{1}}+(2008-1) D$
or $\quad \frac{x_{1}-x_{2008}}{D}=2007 x_{1} x_{2008}$
$\therefore \quad$ From Eqs. (i) and (ii), we get

$$
\sum_{\mathrm{i}=1}^{2007} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}+1}=2007 \mathrm{x}_{1} \mathrm{x}_{2008} \quad \therefore \quad \lambda=2007
$$

10. $\lim _{h \rightarrow 0} \frac{1}{h}\left[\int_{a}^{x+h} \sin ^{4} t d t-\int_{a}^{x} \sin ^{4} t d t\right]$.

Sol. (1)
Use L' Hospital rule, we get

$$
=\lim _{h \rightarrow 0} \frac{\sin ^{4}(x+h)-0}{1}=\sin ^{4} x
$$

11. If α, β be the roots of

Sol. (2)
$\alpha+\beta=1$ and $\alpha \beta=-1$
$A M$ of A_{n-1} and $A_{n}=\frac{A_{n-1}+A_{n}}{2}$

$$
\begin{aligned}
& =\frac{\alpha^{n-1}+\beta^{n-1}+\alpha^{n}+\beta^{n}}{2} \\
& =\frac{\alpha^{n-1}(1+\alpha)+\beta^{n-1}(1+\beta)}{2} \\
& =\frac{\alpha^{n-1}\left(\alpha^{2}\right)+\beta^{n-1}\left(\beta^{2}\right)}{2}\left(\because \alpha^{2}=\alpha+1 \text { and } \beta^{2}-\beta+1\right) \\
& =\frac{1}{2}\left(\alpha^{n+1}+\beta^{n+1}\right)=\frac{1}{2} A_{n+1} \cdot
\end{aligned}
$$

12. Solution of the differential

Sol. (1)

$$
\begin{aligned}
& \left(2 x-10 y^{3}\right) \frac{d y}{d x}+y=0 \\
& \Rightarrow y \frac{d x}{d y}+2 x-10 y^{3}=0
\end{aligned}
$$

$\Rightarrow \frac{d x}{d y}+\frac{2}{y} x-10 y^{2}=0$
I.F. $e^{\int \frac{2}{y} d y}=y^{2}$
$\Rightarrow \quad x y^{2}=\int 10 y^{4} d y$
$\Rightarrow \quad x y^{2}=2 y^{5}+c$
$\Rightarrow y^{2}\left(x-2 y^{3}\right)=c$
13. If $2^{\text {nd }}, 5^{\text {th }}$, and $9^{\text {th }}$ terms

Sol. (3)
$a+d, a+4 d, a+8 d$ are in G.P.
$(a+4 d)^{2}=(a+d)(a+8 d)$
$a^{2}+8 a b+16 d^{2}=a^{2}+9 a d+8 d^{2}$
$\Rightarrow 8 d^{2}=\mathrm{ad} \quad \Rightarrow \frac{\mathrm{a}}{\mathrm{d}}=8$
14. If α, β are the roots \qquad
Sol. (2)

$$
\begin{aligned}
& \alpha+\beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a} \\
& a \alpha+b=-a \beta \\
& a \beta+b=-a \alpha \\
& \therefore \frac{\alpha}{a \beta+b}+\frac{\beta}{a \alpha+b}=-\frac{2}{a}
\end{aligned}
$$

15. Let $S_{1}, S_{2}, \ldots . . S_{n}$ be

Sol. (2)
We have length of a side of $S_{n}=$ length of a diagonal of S_{n+1}
\Rightarrow Length of a side of $S_{n}=\sqrt{2}$ (length of a side of S_{n+1})
$\Rightarrow \frac{\text { Length of a side of } S_{n+1}}{\text { Length of side of } S_{n}}=\frac{1}{\sqrt{2}}$ for all $n \geq 1$
\Rightarrow Sides of $S_{1}, S_{2}, \ldots \ldots S_{n}$ form a G.P. with common ratio $\frac{1}{\sqrt{2}}$ and first term 10.
\therefore Side of $S_{n}=10\left(\frac{1}{\sqrt{2}}\right)^{n-1}=\frac{10}{2^{(n-1) / 2}}$
\Rightarrow Area of $\mathrm{S}_{\mathrm{n}}=(\text { side })^{2}$
$=\left(\frac{10}{2^{\frac{n-1}{2}}}\right)^{2}=\frac{100}{2^{n-1}}$. Now, area of $S_{n}<1 \Rightarrow n-1 \geq 7$
16. The sum to n terms

Sol. (3)
Let S_{n} denote the sum to n terms of the given series. Then,
$S n=11+103+1005+\ldots .$. to n terms
$\Rightarrow \mathrm{S}_{\mathrm{n}}=(10+1)+\left(10^{2}+3\right)+\left(10^{3}+5\right)+\ldots \ldots .+\left\{10^{n}+(2 n-1)\right\}$
$\Rightarrow S_{n}^{n}=\left(10+10^{2}+\ldots . .+10^{n}\right)+\{1+3+5+\ldots \ldots+(2 n-1)\}$
$\Rightarrow S_{n}=\frac{10\left(10^{n}-1\right)}{(10-1)}+\frac{n}{2}(1+2 n-1)=\frac{10}{9}\left(10^{n}-1\right)+n^{2}$
17. The value of the integral

Sol. (1)
$f(\theta)=\log \left(\frac{a-\sin \theta}{a+\sin \theta}\right)$ for which $f(-\theta)=\log \left(\frac{a+\sin \theta}{a-\sin \theta}\right)$
$=-\log \left(\frac{a-\sin \theta}{a+\sin \theta}\right)=-f(\theta)$
Hence, the integrand is an odd function. So, the given integral is zero.
18. The set of values of \qquad
Sol. (4)
$4 x^{2}-20 p x+\left(25 p^{2}+15 p-66\right)=0$
$x^{2}-5 p x+\frac{\left(25 p^{2}+15 p-66\right)}{4}=0$

(i) $\mathrm{D} \geq 0$
$25 p^{2}-4.1 . \frac{\left(25 p^{2}+15 p-66\right)}{4} \geq 0$
$-15 p+66 \geq 0$
$15 p-66 \leq 0$
$p \leq \frac{66}{15}$
$p \leq \frac{22}{5}$
$p \in\left(-\infty, \frac{22}{5}\right]$
(ii) $f(2)>0$
$16-40 p+25 p^{2}+15 p-66>0$
$25 p^{2}-25 p-50>0$
$p^{2}-p-2>0$
$p^{2}-2 p+p-2>0$
$p(p-2)+1(p-2)>0$
$(p-2)(p+1)>0$
$p \in(-\infty,-1) \cup(2, \infty)$
(iii) $\frac{-\mathrm{b}}{2 \mathrm{a}}<2$
$\frac{20 p}{2.4}<2 \Rightarrow p<\frac{16}{20} \Rightarrow p<\frac{4}{5}$
$p \in\left(-\infty, \frac{4}{5}\right)$
(1) $\cap(2) \cap(3)$
$p \in(-\infty,-1)$.
19. Find the area covered.

Sol. (4)
The graph of $(x)=\max \{2-x, 2,1+x\}$ is shown as in the figure.

therefore, $\int_{-1}^{1} \max \{2-x, 2,1+x\} d x$
= Area of the shaded region
$=\frac{1}{2}(2+3) \times 1+1 \times 2=\frac{9}{2}$
20. The value of $\int_{0}^{\pi / 2} x \cot x d x$.. \qquad
Sol. (3)
Integrating by parts taking $\cot x$ as second function, given integral

$$
\begin{aligned}
& I=[x \log \sin x]_{0}^{\pi / 2}-\int_{0}^{\pi / 2} \log \sin x d x \\
& =0-\lim _{x \rightarrow 0}(x \log \sin x)-\int_{0}^{\pi / 2} \log \sin x d x=\frac{1}{2} \pi \log 2 \\
& \text { as } \lim _{x \rightarrow 0} x \log \sin x=\lim _{x \rightarrow 0}\left(\frac{\log \sin x}{1 / x}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{\cot x}{-1 / x^{2}}\right)=\lim _{x \rightarrow 0}\left(\frac{-x^{2}}{\tan x}\right) \\
& =\lim _{x \rightarrow 0}\left(-x, \frac{x}{\tan x}\right)=0.1=0
\end{aligned}
$$

21. The degree and order of \qquad
Sol. (1)
By repeated differentiation $y^{2}=4 a(x+h)$
$\mathrm{yy}_{1}=2 \mathrm{a} \Rightarrow \mathrm{yy}_{2}+\mathrm{y}_{1}{ }^{2}=0$
degree is 1 and order 2
22. The area bounded

Sol. (2)
$y=4$ meets the parablola $y^{2}=x$ at A is $(16,4)$
Required area $=$ Area of rectangle OMAC - Area OMA
$=4 \times 16-\int_{0}^{16} \sqrt{x} d x=64-\left|\frac{x^{3 / 2}}{3 / 2}\right|_{0}^{16}$
$=64-\frac{2}{3}(4)^{3}=64-\frac{128}{3}=\frac{64}{3}$ sq. units

23. Thre ratio in which the \qquad
Sol. (1)

$$
A_{1}=\int_{0}^{3} \sqrt{12 x} d x-\int_{0}^{3} \frac{x^{2}}{12} d x
$$

$=\sqrt{12}\left|\frac{2 x^{3 / 2}}{3}\right|_{0}^{3}-\frac{1}{36}\left|x^{3}\right|_{0}^{3}=\frac{45}{4}$

$A_{2}=\int_{3}^{12} \sqrt{12 x} d x-\int_{3}^{12} \frac{x^{2}}{12} d x=\frac{147}{4}$ (on simplification)
\therefore Required ratio $=45: 147$, ie.e., $15: 49$
24. The value of $\int_{0}^{\infty} f\left(x^{n}+x^{-n}\right)$

Sol. (4)
Here limits and type of function suggest that there is something which is reciprocal to each other.

Let, $t=1 / x \Rightarrow x=1 / t \Rightarrow d x=-\frac{1}{t^{2}} d t$
Also when $\mathrm{x} \rightarrow 0, \mathrm{t} \rightarrow \infty ; \mathrm{x} \rightarrow \infty, \mathrm{t} \rightarrow 0$

$$
\begin{aligned}
& \Rightarrow I=\int_{0}^{\infty} f\left(x^{n}+x^{-n}\right) \ln x \frac{d x}{x} \\
& =\int_{\infty}^{0} f\left(t^{-n}+t^{n}\right) \ln \left(\frac{1}{t}\right) \frac{-\frac{d t}{t^{2}}}{\frac{1}{t}} \\
& =-\int_{0}^{\infty} f\left(t^{n}+t^{-n}\right) \ln (t) \frac{d t}{t}=-I \Rightarrow 2 I=0 \Rightarrow I=0
\end{aligned}
$$

25. $\lim _{n \rightarrow \infty} \frac{1}{n}$

Sol. (3)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n}\left(\sin ^{2} \frac{\pi}{2 n}+\sin ^{2} \frac{2 \pi}{2 n}+\ldots \ldots+\sin ^{2} \frac{n \pi}{2 n}\right) \\
& =\int_{0}^{1} \sin ^{2}\left(\frac{\pi}{2} x\right) d x=\int_{0}^{1} \cos ^{2}\left(\frac{\pi}{2} x\right) d x \\
& \therefore \quad 2 I=1 \quad \therefore \quad I=\frac{1}{2}
\end{aligned}
$$

26. $\lim _{n \rightarrow \infty} \frac{1}{n^{4}}$

Sol. (2)

$$
\ln S=\frac{1}{n} \sum_{r=0}^{2 n} \ln \frac{n^{2}+r^{2}}{n^{2}}=\frac{1}{n} \sum_{r=0}^{2 n} \ln \left(1+\left(\frac{r}{n}\right)^{2}\right)
$$

$=\int_{0}^{2} \ln \left(1+x^{2}\right) d x=\left.x \ln \left(1+x^{2}\right)\right|_{0} ^{2}-\int_{0}^{2} \frac{2 x^{2}}{1+x^{2}} d x$
$=2 \ln 5-2\left(\int_{0}^{2} 1 d x-\int_{0}^{2} \frac{d x}{1+x^{2}}\right)=2 \ln 5-4+2 \tan ^{-1} 2$
$\therefore \quad S=e^{2 \ell n 5-4+2 \tan ^{-1} 2}=\frac{25}{e^{4}} \mathrm{e}^{2 \tan ^{-1} 2}$
27. The solution of the

Sol. (3)
Put $y=v x$
Differential equation becomes
$v+x \frac{d v}{d x}=\frac{x^{2}+x^{2} v+v^{2} x^{2}}{x^{2}}=1+v+v^{2}$
$\int \frac{d v}{1+v^{2}}=\int \frac{d x}{x}$
$\tan ^{-1} \mathrm{v}=\ell \mathrm{n} x+\mathrm{c} \Rightarrow \tan ^{-1}\left(\frac{\mathrm{y}}{\mathrm{x}}\right)=\ell \mathrm{n} \mathrm{x}+\mathrm{c}$
28. The solution of the

Sol. (3)
Put $y=v x$
Differential equation becomes
$\int \frac{4\left(v^{3}+3 v\right)}{v^{4}+6 v^{2}+1} d v=-4 \int \frac{d x}{x}$
$\ell n\left(v^{4}+6 v^{2}+1\right)=-4 \ell n x+\ell n c$
$\Rightarrow x^{4}+y^{4}+6 x^{2} y^{2}=c$
29. If a, b be positive \qquad
Sol. (3)
$\frac{a^{1 / 3}+b^{1 / 3}}{2}<\left(\frac{a+b}{2}\right)^{1 / 3}=\left(\frac{1}{2}\right)^{1 / 3}(\because a+b=1)$
$\therefore \quad \frac{a^{1 / 3}+b^{1 / 3}}{2}<\frac{1}{2^{1 / 3}}$
$\Rightarrow \mathrm{A}<\frac{2}{2^{1 / 3}} \quad$ or $\mathrm{A}<2^{2 / 3}$
30. If x, y be positive real \qquad
Sol. (2)
$\because \frac{\left(\mathrm{x}^{2}\right)^{1 / 2}+\left(\mathrm{y}^{2}\right)^{1 / 2}}{2}<\left(\frac{\mathrm{x}^{2}+\mathrm{y}^{2}}{2}\right)^{1 / 2}=\left(\frac{8}{2}\right)^{1 / 2}=2$
$\Rightarrow \frac{|x|+|y|}{2} \leq 2$
or $|x|+|y| \leq 4 \Rightarrow x+y \leq 4$

PART- B
 PHYSICS

31. In a Kundt's tube \qquad
Sol. (2)
$\lambda_{\text {air }}=2 \Delta \ell$
$\lambda_{\text {gas }}=2 \Delta \ell^{\prime}$
$\frac{V_{\text {gas }}}{V_{\text {air }}}=\frac{f \lambda_{\text {gas }}}{f \lambda_{\text {air }}}=\frac{\Delta \ell^{\prime}}{\Delta \ell}$
$V_{\text {gas }}=\frac{1000}{3} \times \frac{3}{2} \frac{\Delta \ell}{\Delta \ell}=500 \mathrm{~m} / \mathrm{s}^{-1}$
32. An N-P-N

Sol. (3)
The circuit arrangement is shown in figure. Collector current, I_{C}
$=\frac{\text { Voltage drop across } R_{L}}{R_{L}}=\frac{1}{1000}=10^{-3} \mathrm{amp}$
Now $\mathrm{V}_{\mathrm{CE}}=9-1=8$ volt
Current gain $\beta=\frac{I_{C}}{I_{B}}$
or $\frac{25}{26}=\frac{10^{-3}}{I_{B}}$
$\therefore \quad \mathrm{I}_{\mathrm{B}}=1.04 \times 10^{-3} \mathrm{amp}$
Voltage gain $=\beta \frac{R_{L}}{R_{C}}$

$$
=\frac{25}{26} \times \frac{1000}{200}=\frac{125}{26}
$$

Power gain
$=\beta^{2} \frac{R_{L}}{R_{C}}=\left(\frac{25}{26}\right)^{2} \times \frac{1000}{200}=\left(\frac{25}{26}\right)^{2} \times 5=4.6$
Again $I_{E}=I_{B}+I_{C}=1.04 \times 10^{-3}+10^{-3}=2.04 \times 10^{-3} \mathrm{~A}$
33. A piece of \qquad
Sol. (1)
Wein's displacement law
$\lambda_{\text {max }} \propto \frac{1}{\mathrm{~T}}$
34. In a common \qquad
Sol. (4)
$A_{v}=\beta \frac{R_{\text {out }}}{R_{\text {in }}} \Rightarrow G=25 \frac{R_{\text {out }}}{R_{1}}$
$G_{m}=\frac{\beta}{R_{1}} \Rightarrow R_{1}=\frac{\beta}{G_{m}}=\frac{25}{0.03}$
$G=25 \frac{R_{\text {out }}}{25} \times 0.03$
$G^{\prime}=20 \frac{R_{\text {out }}}{20} \times 0.02$
$G^{\prime}=\frac{2}{3} G$
35. If we study

Sol. (3)
Pressure change will be minimum at both ends
36. If photon of \qquad
Sol. (4)
$P=\frac{E}{C}$
$\lambda_{\mathrm{P}}=\frac{\mathrm{hC}}{\mathrm{E}}$
$\lambda_{e}^{2}=\frac{h}{2 m E}$

$$
\frac{\lambda_{p}}{\lambda_{\mathrm{e}}^{2}}=2 \mathrm{mC}
$$

$\lambda_{p} \propto \lambda_{e}^{2}$
37. The half life of

Sol. (1)

$$
\begin{aligned}
& \begin{array}{lllll}
\text { at } t=0 & X & \overrightarrow{N_{0}} & Y_{0} & \\
\text { at } t=t & & N & & N_{0}-N
\end{array} \\
& \frac{N}{N_{0}-N}=\frac{1}{7} \\
& \frac{\mathrm{~N}}{\mathrm{~N}_{0}}=\frac{1}{8} \\
& t=3 t_{1 / 2} \\
& t=3 \times 20=60 \text { year }
\end{aligned}
$$

38. During an adiabatic \qquad
Sol. (3)
$P \propto T^{3}$
$P=K T^{3}$
$P=K\left(\frac{P V}{n R}\right)^{3}$
$\mathrm{P}^{2} \mathrm{~V}^{3}=$ constant
$\mathrm{PV}^{3 / 2}=$ constant
$\gamma=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=\frac{3}{2}$
39. Vernier constant \qquad
Ans. (1)
40. The output(X) \qquad
Sol. (2)

$=\overline{\overline{A . B}}=A B$

Alternate:

A	B	X
0	0	0
1	0	0
0	1	0
1	1	1

41. A slab of stone

Sol. (1)

Rate of heat given by steam = Rate of heat taken by ice

$$
\begin{aligned}
& \frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{KA}(100-0)}{\ell}=\mathrm{m} \frac{\mathrm{dL}}{\mathrm{dt}} \\
& \frac{\mathrm{~K} \times 100 \times 0.36}{0.1}=\frac{4.8 \times 3.36 \times 10^{5}}{60 \times 60} \\
& K=1.24 \mathrm{~J} / \mathrm{m} / \mathrm{s} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

42. An ideal gas goes \qquad
Sol. (1)
Intial and final condition is same for all process

$$
\begin{aligned}
& \Delta \mathrm{U}_{1}=\Delta \mathrm{U}_{2}=\Delta \mathrm{U}_{3} \\
& \Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}
\end{aligned}
$$

Work done $\Delta W_{1}>\Delta W_{2}>\Delta w_{2} \quad$ (Area of P.V. graph)
So $\Delta Q_{1}>\Delta Q_{2}>\Delta Q_{3}$
43. The equation of \qquad
Sol. (2)

$$
\begin{aligned}
& y=3 \sin \frac{\pi}{2}(50 t-x) \\
& y=3 \sin \left(25 \pi t-\frac{\pi}{2} x\right)
\end{aligned}
$$

Wave velocity $\mathrm{v}=\frac{\omega}{\mathrm{k}}=\frac{25 \pi}{\pi / 2}=50 \mathrm{~m} / \mathrm{sec}$.
$v_{p}=\frac{\partial y}{\partial t}=75 \pi \cos \left(25 \pi t-\frac{\pi}{2} x\right)$
$v_{p \max }=75 \pi$
then $\frac{\mathrm{v}_{\mathrm{p}_{\text {max }}}}{\mathrm{v}}=\frac{75 \pi}{50}=\frac{3 \pi}{2}$
44. The input resistance \qquad
Sol. (1)
Voltage gain $=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{I_{\text {out }}}{I_{\text {in }}} \times \frac{R_{\text {out }}}{R_{\text {in }}}$
$=\frac{2 \times 10^{-3}}{40 \times 10^{-6}} \times \frac{4 \times 10^{3}}{100}$
$=2 \times 1000=2000$
45. Figure shows isosceles \qquad
Sol. (1)

According to condition of the problem, height of the isosceles triangle $A B C$ is unchanged. The dotted lines show configuration
after a temperature rise. Increase in length of rod $A B$,
$\begin{array}{ll} & \\ \text { Thus }\end{array} \quad \begin{aligned} \Delta \ell_{1} & =\ell_{1} \alpha_{1} \Delta T \\ A A^{\prime} & =1 / 2 \ell_{1} \alpha_{1} \Delta T\end{aligned}$
We draw a normal from A to $A^{\prime} C$ (the final length of $A C$). Increase in length of $A C$ is $A^{\prime} N$

$$
A^{\prime} N=\ell_{2} \alpha_{2} \Delta T
$$

Considering increase in angle θ to be very small.

$$
A^{\prime} N \simeq A A^{\prime} \cos \theta
$$

Where $\cos \theta=\frac{\ell_{1}}{2 \ell_{2}}$
Thus, we have $\ell_{2} \alpha_{2} \Delta \mathrm{~T}=\left(\frac{1}{2} \ell_{1} \alpha_{1} \Delta \mathrm{~T}\right)\left(\frac{\ell_{1}}{2 \ell_{2}}\right)$
Hence $\frac{\ell_{1}}{\ell_{2}}=2 \sqrt{\frac{\alpha_{2}}{\alpha_{1}}}$
46. The positron is

Sol. (4)
Cannot annihilate into a photon because momentum cannot be conserved.
The total momentum of the electron-positron pair is zero. Hence by momentum conservation, the momentum conservation, the momentum of a photon resulting from annihilate must also be zero. But this is impossible as the photon is stated to have nonzero momentum.
47. If refractive index \qquad
Sol. (4)
$\mu=\frac{3}{2}=\frac{C}{V}$
$\mathrm{V}=\frac{2 \mathrm{C}}{3}=\frac{1}{\sqrt{\varepsilon_{\mathrm{g}} \mu_{\mathrm{g}}}} ; \quad 2 \times 10^{8}=\frac{1}{\sqrt{\varepsilon_{\mathrm{g}} \cdot \mu_{\mathrm{g}}}}$
$4 \times 10^{16}=\frac{1}{3 \varepsilon_{0} \cdot \mu_{g}} ; \mu_{g}=\frac{1}{3\left(4 \varepsilon_{0}\right) \times 10^{16}}$
$\mu_{g}=\frac{\pi}{3\left(4 \pi \varepsilon_{0}\right) \times 10^{16}}=\frac{\pi}{3} \times \frac{9 \times 10^{9}}{10^{16}}$
$=3 \pi \times 10^{9-16}$
$=3 \pi \times 10^{-7}=9.42 \times 10^{-7}$
48. Choose the \qquad
Sol. (3)
(1) $r+e=1$ these means if r is large (good reflector) then e will be small (bad emitter)
(4) efficiency is equal to $1-t_{1} / t_{2}$ (t_{1} cannot be zero so, efficiency can not be 100\%)
49. In a decay \qquad
Sol. (1)
$\frac{N_{0}}{5}=N_{0} e^{-\lambda t_{1}}$
$\Rightarrow \quad \mathrm{t}_{1}=\frac{2 \ell \mathrm{n} 5}{\ell \mathrm{n} 2}=2 \log _{2} 5 \quad\left(\right.$ use $\left.\log _{\mathrm{a}} \mathrm{b} \cdot \log _{\mathrm{b}} \mathrm{a}=1\right)$
$N_{0}-\frac{9 N_{0}}{10}=N_{0} e^{-\lambda t_{2}}$
$\Rightarrow \quad \mathrm{t}_{2}=\frac{2 \ell \mathrm{n} 10}{\ell \mathrm{n} 2}=2 \log _{2} 10=\log _{2} 100$
(i) / (ii) gives,

$$
\begin{aligned}
& 2=e^{\lambda\left(t_{2}-t_{1}\right)} \\
& \ell n 2=\lambda\left(t_{2}-t_{1}\right)
\end{aligned}
$$

From graphs $\mathrm{t}_{1 / 2}=2 \mathrm{sec}$.

$$
\text { So, } \begin{aligned}
& \lambda=\frac{\ell n 2}{t_{1 / 2}}=\frac{\ell n 2}{2} \\
& \ell n 2=\left(t_{2}-t_{1}\right) \\
& t_{2}-t_{1}=2 .
\end{aligned}
$$

50. Select correct

Ans. (4)
51. A source emit \qquad
Sol. (3)
$\lambda^{\prime}=\frac{V-V_{s}}{f}=\frac{332-32}{1000}=0.3 \mathrm{~m}$
$f^{\prime}=f \frac{\left(V+V_{0}\right)}{V-V_{s}}=1000 \times \frac{332+64}{332-32}=1320 \mathrm{~Hz}$
$\lambda^{\prime \prime}=\frac{V-V_{0}}{f^{\prime}}=0.2 \mathrm{~m}$.
52. $\mathrm{p}=\frac{\mathrm{a}-\mathrm{t}^{2}}{\mathrm{bx}}$ \qquad
Sol. (2)
$a=\left[T^{2}\right]$
$[p]=\frac{\left[T^{2}\right]}{b[L]} ; \quad b=\frac{\left[\mathrm{T}^{2}\right]}{[\mathrm{L}]\left[\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}^{2}}\right]}$
$\frac{a}{b}=\frac{M L^{2} T^{-2}}{L^{2}}=M T^{-2}$.
53. Two longitudinal

Sol. (4)

$\frac{f_{1}}{f_{2}}=\frac{v / 2 \ell}{v / 6 \ell}=3$
$\Rightarrow \mathrm{f}_{1}=3 \mathrm{f}_{2}=3 \times 2=6 \mathrm{~Hz}\left(\because \mathrm{f}_{2}=2 \mathrm{~Hz}\right)$
\Rightarrow the difference in frequency of the two waves is $=f_{1}-f_{2}=6-$ $2=4 \mathrm{~Hz}$
54. Three samples \qquad
Sol. (1)
$N_{1} \lambda_{1}: N_{2} \lambda_{2}: N_{3} \lambda_{3}=2: 5: 7$
After two half life

$$
\frac{N_{1} \lambda_{1}}{2^{2}}: \frac{N_{2} \lambda_{2}}{2^{2}}: \frac{N_{3} \lambda_{3}}{2^{2}}=2: 5: 7
$$

55. Density of the

Sol. (3)
For resonance with arm-1

$$
f_{0}=\frac{V}{4 \ell_{1}}
$$

$\Rightarrow \quad \ell_{1}=0.25 \mathrm{~m}$
For resonance, with arm-2

$$
\begin{aligned}
& f_{0}=\frac{3 v}{4 \ell_{2}} \\
& \ell_{2}=0.75 \mathrm{~m} \\
\Rightarrow \quad & \rho_{0}+\rho_{w} g(0.75)=\rho_{0}+\rho g(0.25) \\
\Rightarrow & \rho 3 \rho_{\mathrm{w}} .
\end{aligned}
$$

56. Now we use a

Sol. (2)
For resonance appeared frequency for the tube should be still 300 Hz

$$
\begin{aligned}
& f^{\prime}=f_{0}\left(\frac{V-V_{0}}{V-V_{s}}\right) \\
& 300=302\left(\frac{300-0}{300-(-V)}\right) \\
& V=2 \text { m/sec away from the tube. }
\end{aligned}
$$

57. The modulation

Sol. (2)
$\mu=\frac{A_{m}}{A_{c}}=\frac{20}{30}$
58. The lower

Sol. (4)
LSB $=\mathrm{f}_{\mathrm{c}}-\mathrm{f}_{\mathrm{m}}=12 \mathrm{MHz}-12 \mathrm{kHz}=11988000 \mathrm{~Hz}=11.988 \mathrm{MHz}$
59. How many times \qquad
Ans. (2)
60. If power of sources

Sol. (1)
Phase difference at A is 9π (S_{2} is lag in phase)
Phase difference at B is 3π (S_{1} is lag in phase)
So, 6 times maximum sound can be observed from A to B.
intensity at $A I_{1}=\frac{7200}{4 \pi(10)^{2}}=18 \mathrm{watt} / \mathrm{m}^{2}$
intensity at $B \quad I_{2}=\frac{7200}{4 \pi(6)^{2}}=50 \mathrm{watt} / \mathrm{m}^{2}$
resultant intensity at B
$=\mathrm{I}_{1}+\mathrm{I}_{2}+2 \sqrt{\mathrm{I}_{1} \mathrm{I}_{2}} \cos 5 \pi=(\sqrt{50}-\sqrt{18})^{2}$
PART-C
CHEMISTRY
61. Which of the following

Sol. (3)
Boron $\left(B_{2}\right):(\sigma 1 s)^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 p_{x}^{1}=\pi 2 p_{y}^{1}\right)\left(\sigma p_{z}\right)^{0}$
62. Unequal bond lengths ..

Sol. (3)
63. In which of the following species......

Sol. (2)
(1)

(3)

(4)

64. Which of the following has

Sol. (3)
65. The oxide of an element

Sol. (1)
The element is phosphorus.
66. Which of the following statements

Sol. (3)
(1) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Br}_{2}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl} . \mathrm{H}_{2} \mathrm{O}$; ionization as well as hydrate isomers.
(2) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{NO}_{3}\right)_{3}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)_{2} \mathrm{H}_{2} \mathrm{O}$ hydrate isomers.
(3) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}\left[\mathrm{PtCl}_{6}\right]^{2-}$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{2+} \quad\left[\mathrm{PtCl}_{4}\right]^{2-}$
$\mathrm{Pt}(\mathrm{II}) \operatorname{Pt}(\mathrm{IV}) \quad \mathrm{Pt}(\mathrm{IV}) \quad \mathrm{Pt}(\mathrm{II})$
(4) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right) \mathrm{Cl}\right] \mathrm{Cl} ;\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{ONO}) \mathrm{Cl}\right] \mathrm{Cl}$ linkage isomer and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{2}$ ionization isomer.
67. Usually a disilicate share

Sol. (2)

68. Bubbling CO_{2} through

Sol. (1)
$2 \mathrm{NaAlO}_{2}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{Al}(\mathrm{OH})_{3} \downarrow$
69. When conc. $\mathrm{HNO}_{3} \ldots \ldots$.

Sol. (4)
$4 \mathrm{HNO}_{3}+\mathrm{P}_{4} \mathrm{O}_{10} \xrightarrow{\text { heat }} 2 \mathrm{~N}_{2} \mathrm{O}_{5}+4 \mathrm{HPO}_{3}$
70. Which is not correctly

Sol. (1)
71. A substance X when

Sol. (2)
72. An aqueous solution

Sol. (1)
In excess of $\mathrm{NH}_{4} \mathrm{OH}$ ppt of $\mathrm{Zn}(\mathrm{OH})_{2}$ will get dissolved.
73. (I) When copper ...

Sol. (2)
When copper ore is mixed with silica, in a reverberatory furnace copper matte is produced. The copper matte contains sulphides of copper (I) and iron (II).
74. Among the following

Sol. (4)
On heating with concentrated NaOH solution in an inert atmosphere of CO_{2}, white phosphorus gives PH_{3} gas.
75. Which of the following

Sol. (4)
$\mathrm{BeF}_{2}+2 \mathrm{NaF} \longrightarrow \mathrm{Na}_{2}\left[\mathrm{BeF}_{4}\right]$
76. (I) $\mathrm{V}_{2} \mathrm{O}_{5}, \mathrm{Cr}_{2} \mathrm{O}_{3} \ldots \ldots$.

Sol. (3)
Interstitial compounds are chemically inert
77. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$......

Sol. (2)

$$
2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\underset{\text { Unexposed }}{\mathrm{AgBr}} \longrightarrow \mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{2}\right]+\mathrm{NaBr}
$$

This property is used for fixing in photography.
Sol. $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\underset{\text { अप्रकाशित }}{\mathrm{AgBr}} \longrightarrow \mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]+\mathrm{NaBr}$
78. $\mathrm{H}_{2} \mathrm{~S}$ reacts with lead acetate

Sol. (4)
$\mathrm{H}_{2} \mathrm{~S}+\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{~Pb} \longrightarrow \underset{\text { black }}{\mathrm{PbS}}+2 \mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{PbS}+4 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{PbSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$
79. (I) $\left[\mathrm{MnCl}_{6}\right]^{3-},\left[\mathrm{FeF}_{6}\right]^{3-}$......

Sol. (2)
I:As all are weak field ligands therefore all will have same number of unpaired electrons as in central metal ion. II : V.B.T. does not give any interpretation about the relative thermodynamic stabilities of various complexes. This is one of the limitation of V.B.T.
III : is correct statement.
80. When $[\mathrm{K}]^{+}\left[\mathrm{AgF}_{4}\right]^{-}$......

Sol. (1)
$\mathrm{KAgF}_{4}+\mathrm{BF}_{3} \rightarrow \mathrm{AgF}_{3}+\mathrm{KBF}_{4}$;
$2 \mathrm{AgF}_{3}+\mathrm{Xe} \rightarrow 2 \mathrm{AgF}_{2}+\mathrm{XeF}_{2}$
(red solid) (brown solid)
81. Which of the following ions \qquad
Sol. (1)
82. Which of the following

Sol. (2)
ClO_{2} is powerful oxidising agent, also strong chlorinating agent Its bleaching power is almost 30 times stronger than Cl_{2}. In alkaline solution undergoes disproportionation.

$$
2 \mathrm{ClO}_{2}+2 \mathrm{NaOH} \longrightarrow \mathrm{NaClO}+\mathrm{NaClO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

83. Correct observation

Sol. (2)
$\mathrm{X}: \mathrm{Fe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \mathrm{Y}$ or $\mathrm{Z}: \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$.
84. Which one is incorrect

Sol. (4)
(1) PH_{5} does not exist as there is large difference in energies of s, p and d orbitals and hence it does not undergo $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation.
In SCl_{6}, smaller S cannnot accomodate six larger Cl- ions. Fluorine can not expand its octet because it does not have vacant dorbitals. So FCl_{3} does not exist.
(2)

(3) $\mathrm{P}_{4} \mathrm{O}_{6}$

85. (I) $[\mathrm{Co}(E D T A)]^{-}$......

Sol. (4)
(I), (II) and (III) are correct statements.
(IV) It is an example of only hydrate isomerism not ionisation isomerism because ionisation isomerism occurs owing to exchange of ions between coordination and ionisation spheres.
86. Identify the least stable ...

Sol. (1)
87. When haematite ore is burnt..

Sol. (2)
88. Which of the following

Sol. (3)
89. In which of the following complex

Sol. (3)
In $\left[\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}\right.$; Fe (II) is $\mathrm{t}_{2 \mathrm{~g}}{ }^{6}$, eg^{0} due to strong ligands.
90. Ammonia, on reaction

Sol. (3)

$$
2 \mathrm{NH}_{3}+\mathrm{OCl}^{-} \longrightarrow \mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}^{-}
$$

