PAPER-1

PART-1 : PHYSICS SOLUTION

SECTION-I

1. Ans. (D)

Sol.

at $\mathrm{t}=1 \mathrm{sec}$

after explosion
now $\mathrm{n}=\left[20(1)-\frac{1}{2} \mathrm{~g}(1)^{2}\right]+\frac{(20)^{2}}{2 \mathrm{~g}}$

$$
=35 \mathrm{~m}
$$

2. Ans. (A)

Sol. $\mathrm{h}_{\max }=\frac{\mathrm{m} v_{0}^{2}}{2(\mathrm{w}+\mathrm{f})}$

$$
\text { now } \quad v_{\mathrm{f}}^{2}=2\left(\frac{\mathrm{w}-\mathrm{f}}{\mathrm{~m}}\right) \frac{\mathrm{m} v_{0}^{2}}{2(\mathrm{w}+\mathrm{f})}
$$

$$
\mathrm{v}_{\mathrm{f}}=\sqrt{\frac{\mathrm{w}-\mathrm{f}}{\mathrm{w}+\mathrm{f}}} v_{0}
$$

3. Ans. (B)

Sol. Since temperature is same
\Rightarrow same average speed
4. Ans. (B)

Sol.

$\mathrm{Q}=\frac{200-18}{\frac{\mathrm{~L}}{\mathrm{kA}}\left(\frac{1}{1}+\frac{1}{2}+\frac{2}{3}\right)}=\frac{200-\mathrm{T}}{\frac{\mathrm{L}}{\mathrm{kA}}}$
$\frac{182}{13 / 6}=200-T$
$\mathrm{T}=116{ }^{\circ} \mathrm{C}$
5. Ans. (A)

Sol. The maximum current is obtained at resonance where the net impedance is only resistive which is the resistance of the coil only. This gives the resistance of the coil as 10 ohm. Now, this coil along with the internal resistance of the cell gives a current of 0.5 A .

$$
\begin{aligned}
& \mathrm{R}=\frac{6}{600 \times 10^{-3}}=10 \Omega \\
& \mathrm{i}=\frac{6}{10+2}=\frac{1}{2} \mathrm{~A}
\end{aligned}
$$

6. Ans. (C)

Sol. WD by $\overrightarrow{\mathrm{F}}=\overrightarrow{\mathrm{C}} \times \overrightarrow{\mathrm{v}}$ will be zero since WD $=\int \vec{f} \cdot d \vec{r}=\int \vec{f} \cdot \vec{v} d t$

$$
=\int(\overrightarrow{\mathrm{C}} \times \overrightarrow{\mathrm{V}}) \cdot \overrightarrow{\mathrm{V}} \mathrm{dt}=0
$$

$\mathrm{WD}=\Delta \mathrm{K}+\Delta \mathrm{U}$
$\left.0=\left[\frac{1}{2} \mathrm{~m}\left(\frac{\mathrm{v}_{\mathrm{o}}}{3}\right)^{2}-\frac{1}{2} \mathrm{mv}_{\mathrm{o}}^{2}\right]+\mathrm{qEd}\right]$
7. Ans. (B)

Sol. $\mathrm{C}_{\mu}=\frac{\mathrm{R}}{\gamma-1}+\frac{\mathrm{R}}{1-\mathrm{X}}$
At A, $\mathrm{X}=\gamma$
8. Ans. (C)

Sol. $\mathrm{a}_{\mathrm{m}_{2}}=\left(\frac{\mathrm{m}_{2} \mathrm{~g}-\mathrm{m}_{1} \mathrm{~g}}{\mathrm{~m}_{2}}\right)$
9. Ans. (D)

Sol. $\mathrm{V}_{\mathrm{A}}-2 \times 3-3+2-1=\mathrm{V}_{\mathrm{B}}$
$\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}=-8$ volt

10. Ans. (D)

Sol. Plates are brought closer capacity will increase. As battery is removed charge remain constant. $\mathrm{U}=\frac{1}{2} \frac{\mathrm{Q}^{2}}{\mathrm{C}}$
$\Rightarrow \quad \mathrm{U} \propto 1 / \mathrm{C}$. Hence stored energy will decrease.
11. Ans. (A,B,C,D)

Sol. $\frac{\mathrm{nR}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)}{\gamma-1}=\mathrm{W}$
$\sqrt{\frac{\frac{4}{3} \times \frac{25}{3} \times 400}{40 \times 10^{-3}}}=\frac{100 \times 2 \times 10}{3 \times 2}=\frac{1000}{3}=\mathrm{v}$
$400 \times\left(10^{-3}\right)^{1 / 3}=300 \times \mathrm{V}^{1 / 3}$
$\mathrm{V}^{1 / 3}=\frac{4}{30}$
$\mathrm{V}=\frac{8}{3375} \mathrm{~m}^{3}$
12. Ans. (A,D)

Sol. $2 \mathrm{~A} \sin \mathrm{kx}=3 \sqrt{2}$
$2 \times 3 \sin \mathrm{kx}=3 \sqrt{2}$
$\sin \mathrm{kx}=\frac{1}{\sqrt{2}}$
$\frac{2 \pi}{\lambda} \mathrm{x}=\frac{\pi}{4} ; \frac{3 \pi}{4}$

Distance between consecutive points
$=\frac{3 \lambda}{8}-\frac{\lambda}{8}=\frac{\lambda}{4}$
$\frac{\lambda}{4}=20 \mathrm{~cm}$
$\Rightarrow \lambda=80 \mathrm{~cm}$
So, $\quad(\mathrm{n}+1) \frac{\lambda}{2}=240$
$\Rightarrow \quad(\mathrm{n}+1) \frac{80}{2}=240$
or $\quad n+1=6$
$\mathrm{n}=5$
So string is vibrating in fifth overtone.
13. Ans. (A,B,D)

Sol. $\mathrm{i}_{\text {rms }}=5 \mathrm{~A}$
Reading of voltmeter $=i_{\text {rms }} \sqrt{R^{2}+X_{C}^{2}}$
From this $X_{C}=20 \Omega \Rightarrow \omega=10^{3} \mathrm{rad} / \mathrm{s}$
$\Rightarrow \mathrm{f}=\frac{1000}{2 \pi}$
$\therefore \mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}=20 \Omega$
therefore the circuit is in resonance
$\mathrm{E}_{\mathrm{rms}}=\mathrm{i}_{\mathrm{rms}} \mathrm{R}=50 \mathrm{~V}$ also power factor $=1$
av. Power $=\mathrm{E}_{\mathrm{rms}} \mathrm{i}_{\mathrm{rms}} \cos \phi=250 \mathrm{~W}$
14. Ans. (B, C)

Sol. $\frac{\mathrm{v}_{\mathrm{A}}}{\mathrm{v}_{\mathrm{B}}}=\sqrt{\frac{\gamma_{\mathrm{A}}}{\gamma_{\mathrm{B}}} \frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{M}_{\mathrm{A}}}}=\sqrt{\frac{7 \times 3}{5 \times 5} \times \frac{4}{2}}=\sqrt{\frac{42}{25}}$
(M_{A} and M_{B} are molecular weight of A and B respectively)

$$
\begin{aligned}
& \frac{3 \mathrm{v}_{\mathrm{A}}}{2 \mathrm{l}_{\mathrm{A}}}=\frac{3 \mathrm{v}_{\mathrm{B}}}{4 \mathrm{l}_{\mathrm{B}}} \\
\Rightarrow \quad & \frac{\mathrm{l}_{\mathrm{A}}}{\mathrm{l}_{\mathrm{B}}}=\frac{2 \mathrm{v}_{\mathrm{A}}}{\mathrm{v}_{\mathrm{B}}}=\sqrt{\frac{168}{25}}
\end{aligned}
$$

15. Ans. (C,D)

Sol. Since the orientation of the disc is constantly changing the angular velocity is constantly changing the direction, hence the angular acceleration cannot be zero.

SECTION-IV

1. Ans. 8

Sol. $i=\frac{B l v}{R}$

$\operatorname{mv} \frac{\mathrm{dv}}{\mathrm{dx}}=\mathrm{f}=\mathrm{Bi} l=-\frac{\mathrm{B}^{2} l^{2} \mathrm{v}}{\mathrm{R}}$
$\int_{v_{0}}^{0} d v=\frac{-B^{2} l^{2}}{m R} \int_{0}^{x} d x$
$\Rightarrow \mathrm{x}=\frac{\mathrm{mv}_{0} \mathrm{R}}{\mathrm{B}^{2} \ell^{2}}=8 \mathrm{~m}$
2. Ans. 6

Sol.

energy incident/sec on the particle

$$
\begin{aligned}
& =\frac{\mathrm{P}}{4 \pi \mathrm{r}^{2}} \times \pi \mathrm{R}^{2} \\
& =\frac{\mathrm{PR}^{2}}{4 \mathrm{r}^{2}}
\end{aligned}
$$

\vec{F} due to striking of photon
$\overrightarrow{\mathrm{F}}_{1}=\frac{\overrightarrow{\mathrm{dp}}}{\mathrm{dt}}=$ Change in lin. mom. of 1 photon in collision \times No. of photons striking per sec.

$$
\begin{aligned}
& =\frac{\mathrm{h} v}{\mathrm{C}} \times \frac{\mathrm{PR}^{2}}{4 \mathrm{r}^{2} \times \mathrm{h} v} \\
& =\frac{\mathrm{PR}^{2}}{4 \mathrm{r}^{2} \mathrm{C}}
\end{aligned}
$$

Gravitational force on the particle

$$
\overrightarrow{\mathrm{F}}_{2}=\frac{\mathrm{GM}_{\mathrm{s}} \mathrm{~m}}{\mathrm{r}^{2}}=\frac{\mathrm{GM}_{\mathrm{s}}}{\mathrm{r}^{2}} \times \frac{4}{3} \pi \mathrm{R}^{3} \rho
$$

$$
\begin{aligned}
\left|\overrightarrow{\mathrm{F}}_{1}\right|= & \left|-\overrightarrow{\mathrm{F}}_{2}\right| \\
& \frac{\mathrm{PR}^{2}}{4 \mathrm{r}^{2} \mathrm{C}}=\frac{\mathrm{GM}_{\mathrm{s}} \times 4 \pi \mathrm{R}^{3} \rho}{3 \mathrm{r}^{2}} \\
\Rightarrow \quad & \mathrm{R}=\frac{3 \mathrm{P}}{4 \mathrm{GM}_{\mathrm{s}} \pi \rho \mathrm{C}}=0.6
\end{aligned}
$$

3. Ans. 2

Sol. $\frac{1}{\mathrm{v}}-\frac{1}{25}=\frac{1}{\mathrm{f}} \Rightarrow \frac{1}{25 \mathrm{~m}_{1}}-\frac{1}{25}=\frac{1}{\mathrm{f}}$
$\frac{1}{\mathrm{v}}-\frac{1}{40}=\frac{1}{\mathrm{f}} \Rightarrow \frac{1}{40 \mathrm{~m}_{2}}-\frac{1}{40}=\frac{1}{\mathrm{f}}$
$\mathrm{m}_{1}=4 \mathrm{~m}_{2}$
Solving $\mathrm{m}_{2}=-1$
$\frac{1}{\mathrm{f}}=-\frac{1}{40}-\frac{1}{40}=\frac{-1}{20}$
$\mathrm{f}=-20$
$\mathrm{x}=2$
4. Ans. 5

Sol. $\mathrm{I}_{0}=\frac{\mathrm{V}_{0}}{\sqrt{\mathrm{X}_{\mathrm{L}}^{2}+\mathrm{R}^{2}}}$

$$
\begin{aligned}
& =\frac{220 \sqrt{2}}{\sqrt{\left(35 \times 10^{-3} \times 50 \times 2 \times \frac{22}{7}\right)^{2}+(11)^{2}}} \\
& =\frac{220}{11 \sqrt{2}} \sqrt{2}=20=4 \mathrm{n} \Rightarrow \mathrm{n}=5
\end{aligned}
$$

5. Ans. 4

Sol. $\mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2}$
$\mathrm{V}_{2}=16 \mathrm{~m} / \mathrm{s}$
Applying Bernoulli's equation
$\mathrm{P}_{1}+\frac{1}{2} \rho \mathrm{v}_{1}^{2}=\mathrm{P}_{2}+\frac{1}{2} \rho \mathrm{v}_{2}^{2} \quad\left(\rho=0.9 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)$

SECTION-I

1. Ans. (D)

Sol. Theory based.
2. Ans. (C)

Sol.

3. Ans. (C)

Sol. $\mathrm{P} \rightarrow \mathrm{Q}$ - Adiabatic irreversible $\Rightarrow \Delta \mathrm{S}_{\mathrm{PQ}}>0$.
$\mathrm{P} \rightarrow \mathrm{R}-$ Adiabatic reversible $\Rightarrow \Delta \mathrm{S}_{\mathrm{PR}}=0$.
Since entropy is state function hence

$$
\Delta \mathrm{S}_{\mathrm{PQ}}+\Delta \mathrm{S}_{\mathrm{QR}}=\Delta \mathrm{S}_{\mathrm{PR}}
$$

$\Rightarrow \Delta \mathrm{S}_{\mathrm{QR}}<0$.
4. Ans. (D)

Sol. Complete hydrolysis of XeF_{4} is redox.
$6 \mathrm{XeF}_{6}+12 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{Xe}+2 \mathrm{XeO}_{3}+24 \mathrm{HF}+3 \mathrm{O}_{2}$
5. Ans. (C)

Sol.

6. Ans. (A)

Sol. Boiling takes place when vapour pressure is equal to external pressure. If we are still heating then vapour pressure will remain same but temperature of the water increases.
7. Ans. (C)

Sol. $\mathrm{N} \equiv \mathrm{N}$
$\mathrm{C}=\mathrm{C} \rightarrow$ It has both bonds as $\pi-$ bond according to MOT.
8. Ans. (D)

Sol.

9. Ans. (D)

Sol. The cosmic ray generates neutrons in the atmosphere which bombards the nucleus of atmospheric nitrogen to form radioactive ${ }^{14} \mathrm{C}$ hence ${ }^{14} \mathrm{C}$ in the atmosphere has been remaining constant over thousands of years. In living materials, the ratio of ${ }^{14} \mathrm{C}$ to ${ }^{12} \mathrm{C}$ remains relatively constant. When the tissue in an animal or plant dies, assimilation of radioactive ${ }^{14} \mathrm{C}$ ceased to continue. Therefore, in the dead tissue the ratio of ${ }^{14} \mathrm{C}$ to ${ }^{12} \mathrm{C}$ would decrease depending on the age of the tissue.

$$
\begin{aligned}
& { }_{7}^{14} \mathrm{~N}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{6}^{14} \mathrm{C}+{ }_{1}^{1} \mathrm{p} \\
& { }_{6}^{14} \mathrm{C}+{ }_{7}^{14} \mathrm{~N}+{ }_{-1}^{0} \mathrm{e}
\end{aligned}
$$

A sample of dead tissue is burnt to give carbon dioxide and the carbon dioxide is analysed for the ratio of ${ }^{14} \mathrm{C}$ to ${ }^{12} \mathrm{C}$. From this data, age of dead tissue (plant or animal) can be determined.
10. Ans. (C)

Sol. Natural rubber \rightarrow Natural, Addition, Homopolymer.
Starch \rightarrow Natural, Condensation, Homopolymer.
Insulin \rightarrow Natural, Condensation, Co-polymer.
Dacron \rightarrow Synthetic, Condensation, Co-polymer.

11. Ans. (B)

Sol. $\mathrm{Zn}+\mathrm{HNO}_{3}($ dil. $) \longrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{N}_{2} \mathrm{O}+2 \mathrm{NaNH}_{2} \longrightarrow \mathrm{NaN}_{3}+\mathrm{NaOH}+\mathrm{NH}_{3}
$$

12. Ans. (A,B,D)

Sol.

Every small cube center is containing one tetrahedral void.
Clearly from the diagram four corners of small cube is occupied by x and four are occupied by Y.

13. Ans. (A,C,D)

Sol. Acid + Alcohol $\stackrel{\mathrm{H}^{+}}{\rightleftharpoons}$ Ester $+\mathrm{H}_{2} \mathrm{O}$

$$
\begin{array}{llll}
1 & 10 & 0 & \\
1-\mathrm{x} & 10-\mathrm{x} \simeq 10 & \mathrm{x} & \mathrm{x}
\end{array}
$$

$$
\begin{aligned}
& \frac{10 \times x}{1-x}=1 \\
& \frac{x}{1-x}=0.1 \\
& 10 x+x=1 \\
& x=\frac{1}{11}=0.9
\end{aligned}
$$

In option (B) Catalyst cannot change free energy.

14. Ans. (A,B,C,D)

Sol. This motion is indepdent of the nature of the colloid but depends on the size of the particles and viscosity of the solution. Smaller the size and lesser the viscosity faster is the motion.
The Brownian movement has been explained to be due to the unbalanced bombardment of the particles by the molecules of the dispersion medium. The Brownian movement has a stirring effect which does not permit the particles to settle and thus, is responsible for the stability of sols.
15. Ans. (B,C,D)

Sol. $\mathrm{CoCl}_{3}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \longrightarrow \mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}+\mathrm{CoCl}_{3} \cdot 5 \mathrm{NH}_{3}+\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} 3 \mathrm{Cl}-$ yellow $-\mathrm{d}^{2} \mathrm{sp}^{3}$ (diamagnetic).
$\left[\mathrm{Co}\left(\mathrm{NH}_{5}\right) \mathrm{Cl}\right]^{2+} 2 \mathrm{Cl}-$ purple $-\mathrm{d}^{2} \mathrm{sp}^{3}$ (diamagnetic).
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+} \mathrm{Cl}^{-}$- green and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+} \mathrm{Cl}^{-}$- violet are geometrical isomers.

* Geometrical isomers will produce same amount of AgCl .

SECTION-IV

1. Ans. (4)

Sol.

2. Ans. (9)

Sol. $0 \leq \ell \mathrm{n}+2, \quad 0 \leq \mathrm{m}<\ell+1$
for $\mathrm{n}=2$
$\ell=0,1,2,3,4$ (In integral steps).
If $\ell=0, \quad \mathrm{~m}=0$
$\ell=1, \quad \mathrm{~m}=0,1$
$\ell=2, \quad \mathrm{~m}=0,1,2$
$\ell=3, \quad \mathrm{~m}=0,1,2,3$
$\ell=4, \quad \mathrm{~m}=0,1,2,3,4$
Hence total 15 orbitals are possible in $2^{\text {nd }}$ shell.
3. Ans. (5)

Sol. $\mathrm{N}\left(\mathrm{SiH}_{3}\right)_{3}, \mathrm{BF}_{3}, \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}, \mathrm{SO}_{2}, \mathrm{NO}_{2} \rightarrow \mathrm{sp}^{2}$
$\mathrm{SiO}_{2}, \mathrm{H}_{3} \mathrm{O}^{\oplus} \rightarrow \mathrm{sp}^{3}$
$\mathrm{AlCl}_{3} .6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{sp}^{3} \mathrm{~d}^{2}$.
4. Ans. (5)

Sol. It is a buffer solution

$$
\mathrm{pH}=\mathrm{X}=\mathrm{pKa}+\log \frac{[\text { salt }]}{[\text { acid }]}
$$

$$
=4+\log \frac{0.1 / 2}{0.1 / 2}=4.0
$$

Assorbic acid pK_{a} values

Hence isoelectric point $=\frac{\mathrm{pKa}_{1}+\mathrm{pKa}_{2}}{2}=\frac{2+4}{2}=3$
Hence at 4.0 pH , it is overall -vely charged and moves towards anode.
Hence answer is $(\mathrm{X}+1)=(3.7+1)=4.7$
5. Ans. (6)

Sol. Molarity of $1^{\text {st }}$ solution $=\frac{0.2 \times \mathrm{M}}{\frac{0.2 \mathrm{M}+18 \times 0.8}{\mathrm{~d}_{1}}} \times 1000$
Molarity of $2^{\text {nd }}$ solution $=\frac{0.1}{\frac{0.1 M+0.9 \times 18}{d_{2}}} \times 1000$
$\Rightarrow \quad \mathrm{d}_{2}=0.8 \mathrm{~d}_{1}$
$\frac{1}{2} \times \frac{0.2 \times 1000}{0.2 \mathrm{M}+18 \times 0.8} \times \mathrm{d}_{1}=\frac{0.1 \times 0.8 \mathrm{~d}_{1}}{0.1 \mathrm{M}+0.9 \times 18}$
$\Rightarrow \quad \frac{5}{0.2 \mathrm{M}+18 \times 0.8}=\frac{4}{0.1 \mathrm{M}+0.9 \times 18}$

$$
\mathrm{M}=78
$$

PART-3 : MATHEMATICS

SECTION-1

1. Ans. (B)

Sol. $\lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{r}=0}^{\mathrm{n}} \frac{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}}{\mathrm{n}^{\mathrm{r}}} \cdot\left(\int_{0}^{1} \mathrm{x}^{\mathrm{r}+3} \mathrm{dx}\right)$

$$
\begin{aligned}
& =\int_{0}^{1}\left(\lim _{n \rightarrow \infty} \sum_{r=0}^{n}{ }^{n} C_{r} \cdot\left(\frac{x}{n}\right)^{r} \cdot x^{3}\right) d x \\
& =\int_{0}^{1} \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \cdot x^{3} d x=\int_{0}^{1} e^{x} \cdot x^{3} d x=6-2 e
\end{aligned}
$$

2. Ans. (B)

Sol. $y^{\prime}(x) \cdot g(x)-y(x) \cdot g^{\prime}(x)+y^{2}(x)=0$

$$
\begin{aligned}
& \Rightarrow-\mathrm{d}\left(\frac{\mathrm{~g}(\mathrm{x})}{\mathrm{y}(\mathrm{x})}\right)+1=0 \\
& \Rightarrow-\frac{\mathrm{g}(\mathrm{x})}{\mathrm{y}(\mathrm{x})}+\mathrm{x}+\mathrm{c}=0 \\
& \Rightarrow \frac{\mathrm{~g}(\mathrm{x})}{\mathrm{y}(\mathrm{x})}=\mathrm{x}+\mathrm{c} \\
& \Rightarrow \mathrm{y}(-1)=1 \text { and } \mathrm{g}(-1)=0 \\
& \Rightarrow \frac{\mathrm{~g}(\mathrm{x})}{\mathrm{y}(\mathrm{x})}=1+\mathrm{x}
\end{aligned}
$$

$\triangle \mathrm{ANQ}$ and $\triangle \mathrm{ASR}$ are similar
$\Rightarrow \frac{\ell}{\mathrm{n}}=\frac{\mathrm{AQ}}{\mathrm{AR}}$
Similarly $\triangle \mathrm{AQS}$ and $\triangle \mathrm{ARM}$ are similar

$$
\begin{aligned}
\frac{\mathrm{n}}{\mathrm{~m}} & =\frac{\mathrm{AQ}}{\mathrm{AR}} \\
\Rightarrow \mathrm{n}^{2} & =\ell \mathrm{m}
\end{aligned}
$$

4. Ans. (B)

Sol. Let vertices $A_{1}, A_{2}, \ldots \ldots . . A_{7}$ are $7^{\text {th }}$ roots of unity. Let $\mathrm{A}_{1}(1), \mathrm{A}_{2}(\alpha), \mathrm{A}_{3}\left(\alpha^{2}\right), \mathrm{A}_{4}\left(\alpha^{3}\right)$
$\mathrm{A}_{5}=\alpha^{4}=\overline{\alpha^{3}}, \mathrm{~A}_{6}=\alpha^{5}=\overline{\alpha^{2}}, \mathrm{~A}_{7}=\alpha^{6}=\bar{\alpha}$ $(1-\alpha)\left(1-\alpha^{2}\right)\left(1-\alpha^{3}\right)\left(1-\alpha^{4}\right)\left(1-\alpha^{5}\right)\left(1-\alpha^{6}\right)=7$ $\Rightarrow\left(|1-\alpha|\left|1-\alpha^{2}\right|\left|1-\alpha^{3}\right|\right)^{2}=7$
$\mathrm{p}_{1}=\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right)\left(\mathrm{A}_{1} \mathrm{~A}_{3}\right)\left(\mathrm{A}_{1} \mathrm{~A}_{4}\right)\left(\mathrm{A}_{1} \mathrm{~A}_{5}\right)\left(\mathrm{A}_{1} \mathrm{~A}_{6}\right)\left(\mathrm{A}_{1} \mathrm{~A}_{7}\right)$
$=|1-\alpha|\left|1-\alpha^{2}\right|\left|1-\alpha^{3}\right|\left|1-\overline{\alpha^{3}}\right|\left|1-\overline{\alpha^{2}}\right||1-\bar{\alpha}|$
$=|1-\alpha|\left|1-\alpha^{2}\right|\left|1-\alpha^{3}\right|\left|\overline{1-\alpha^{3}}\right|\left|\overline{1-\alpha^{2}}\right||\overline{1-\alpha}|$
$=\left(|1-\alpha|\left|1-\alpha^{2}\right|\left|1-\alpha^{3}\right|\right)^{2}=(\sqrt{7})^{2}$

Similarly

$$
\begin{aligned}
& \mathrm{p}_{2}=|1-\alpha|\left|1-\alpha^{2}\right|\left|1-\alpha^{3}\right|\left|1-\alpha^{3}\right|\left|1-\alpha^{2}\right| \\
& \quad=\sqrt{7}\left(\left|1-\alpha^{3}\right|\left|1-\alpha^{2}\right|\right) \\
& \\
& \mathrm{p}_{3}=\sqrt{7}\left(\left|1-\alpha^{3}\right|\right) \\
& \mathrm{p}_{4}=\sqrt{7}, \mathrm{p}_{5}=|1-\alpha|\left|1-\alpha^{2}\right| \\
& \text { and } \mathrm{p}_{6}=|1-\alpha| \\
& \Rightarrow \mathrm{p}_{1} \cdot \mathrm{p}_{2} \cdot \mathrm{p}_{3} \cdot \mathrm{p}_{4} \cdot \mathrm{p}_{5} \cdot \mathrm{p}_{6}=(\sqrt{7})^{7}
\end{aligned}
$$

5. Ans. (A)

where s is semiperimeter and Δ is area of triangle
Sol. $\quad \ell_{1}=\sqrt{\left(\frac{a}{2}\right)^{2}-\left(\frac{\mathrm{b}-\mathrm{c}}{2}\right)^{2}}$
$\ell_{1}^{2}=\left(\frac{\mathrm{a}+\mathrm{b}-\mathrm{c}}{2}\right)\left(\frac{\mathrm{a}-\mathrm{b}+\mathrm{c}}{2}\right)$
$\ell_{1}^{2}=(\mathrm{s}-\mathrm{c})(\mathrm{s}-\mathrm{b})$
$\ell_{2}{ }^{2}=(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{c})$
$\ell_{3}{ }^{2}=(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})$
$\Rightarrow\left(\ell_{1} \ell_{2} \ell_{3}\right)^{2}=(\mathrm{s}-\mathrm{a})^{2}(\mathrm{~s}-\mathrm{b})^{2}(\mathrm{~s}-\mathrm{c})^{2}$
$\ell_{1} \ell_{2} \ell_{3}=(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})$
$\ell_{1} \ell_{2} \ell_{3}=\frac{\Delta^{2}}{\mathrm{~s}}$
6. Ans. (C)

Sol. Let $\mathrm{A}_{1} \mathrm{H}_{11}=\mathrm{A}_{2} \mathrm{H}_{10}=\mathrm{A}_{3} \mathrm{H}_{9}=\mathrm{A}_{4} \mathrm{H}_{8}=\mathrm{A}_{5} \mathrm{H}_{7}$
$=9$
$\mathrm{G}_{2} \mathrm{G}_{10}=\mathrm{G}_{4} \mathrm{G}_{8}=\left(\mathrm{G}_{6}\right)^{2}=9$
$\prod_{\mathrm{k}=1}^{5}\left(\mathrm{~A}_{\mathrm{k}} \cdot \mathrm{G}_{12-2 \mathrm{k}} \cdot \mathrm{H}_{12-\mathrm{k}}\right)$
$=\left(\mathrm{A}_{1} \mathrm{H}_{11}\right)\left(\mathrm{A}_{2} \mathrm{H}_{10}\right)\left(\mathrm{A}_{3} \mathrm{H}_{9}\right)\left(\mathrm{A}_{4} \mathrm{H}_{8}\right)\left(\mathrm{A}_{4} \mathrm{H}_{7}\right)\left(\mathrm{A}_{5} \mathrm{H}_{7}\right)\left(\mathrm{G}_{10} \mathrm{G}_{8} \mathrm{G}_{6} \mathrm{G}_{4} \mathrm{G}_{2}\right)$
$=\left(9^{5}\right)(9)^{2} \cdot 3$
$=3^{15}$
7. Ans. (B)

Sol.

$\overrightarrow{\mathrm{OQ}}=\frac{\mathrm{a}}{\sqrt{2}} \hat{\mathrm{i}}, \overrightarrow{\mathrm{OR}}=\frac{\mathrm{a}}{\sqrt{2}} \hat{\mathrm{k}}, \overrightarrow{\mathrm{OP}}=\frac{\mathrm{a}}{\sqrt{2}} \hat{\mathrm{j}}$
$\overrightarrow{\mathrm{SP}}=\overrightarrow{\mathrm{OP}}-\overrightarrow{\mathrm{OS}}=\frac{\mathrm{a}}{\sqrt{2}}(\hat{\mathrm{j}}+\hat{\mathrm{i}})$
$\overrightarrow{\mathrm{QR}}=\overrightarrow{\mathrm{OR}}-\overrightarrow{\mathrm{OQ}}=\frac{\mathrm{a}}{\sqrt{2}}(\hat{\mathrm{k}}-\hat{\mathrm{i}})$
$\cos \theta=\left|\frac{\overrightarrow{\mathrm{QR}} \cdot \overrightarrow{\mathrm{SP}}}{|\overrightarrow{\mathrm{QR}}||\overrightarrow{\mathrm{SP}}|}\right|=\left|\frac{-\frac{\mathrm{a}^{2}}{2}}{\mathrm{a}^{2}}\right|=\left|-\frac{1}{2}\right|$
$\Rightarrow \theta=\frac{\pi}{3}$

8. Ans. (C)

Sol. $\mathrm{x}<\mathrm{y}<\mathrm{z} \Rightarrow$ number of numbers $={ }^{9} \mathrm{C}_{3}$
$\mathrm{x}=\mathrm{y}<\mathrm{z} \Rightarrow$ number of numbers $={ }^{9} \mathrm{C}_{2}$
$\mathrm{x}<\mathrm{y}=\mathrm{z} \Rightarrow$ number of numbers $={ }^{9} \mathrm{C}_{2}$
$x=y=z \Rightarrow$ number of numbers $=9$
total numbers $={ }^{9} \mathrm{C}_{3}+{ }^{9} \mathrm{C}_{2}+{ }^{9} \mathrm{C}_{2}+9=165$
9. Ans. (B)

Sol.

$\cos \alpha=\frac{\mathrm{ED}}{\mathrm{OD}}=\frac{1}{4}$
$B D=4 \tan \alpha$
$=4 \sqrt{15}$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times 6 \times 4 \sqrt{15}=12 \sqrt{15}$
10. Ans. (D)

Sol. $4^{\mathrm{a}}+4^{\mathrm{b}}+3$
$=(5-1)^{\mathrm{a}}+(5-1)^{\mathrm{b}}+3$
$=5$ (integer) $+(-1)^{\mathrm{a}}+(-1)^{\mathrm{b}}+3$
$\Rightarrow \mathrm{a}$ and b both must be even
\Rightarrow prob $=\frac{{ }^{25} \mathrm{C}_{2}}{{ }^{50} \mathrm{C}_{2}}=\frac{25 \times 24}{50 \times 49}=\frac{12}{49}$

11. Ans. (A, B)

Sol. Let $\mathrm{f}(\mathrm{x})=\left(\mathrm{x}-\alpha_{1}\right)\left(\mathrm{x}-\alpha_{2}\right)$...... $\left(\mathrm{x}-\alpha_{2018}\right)$
$\mathrm{f}(0)=\mathrm{f}(1)$
$\Rightarrow \alpha_{1} \cdot \alpha_{2} \ldots . \alpha_{2018}=\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) \ldots . .\left(1-\alpha_{2018}\right)$
$\Rightarrow \alpha_{1}{ }^{2} \cdot \alpha_{2}{ }^{2} \ldots \ldots . \alpha_{2018}{ }^{2}=\alpha_{1}\left(1-\alpha_{1}\right) \cdot \alpha_{2}\left(1-\alpha_{2}\right)$
$\ldots \ldots . . \alpha_{2018}\left(1-\alpha_{2018}\right)$
Apply A.M. \geq G.M.
in α_{1} and $1-\alpha_{1}$

$$
\frac{\alpha_{1}+1-\alpha_{1}}{2} \geq\left(\alpha_{1}\left(1-\alpha_{1}\right)\right)^{\frac{1}{2}}
$$

$\Rightarrow\left(\alpha_{1}\left(1-\alpha_{1}\right)\right)^{\frac{1}{2}} \leq \frac{1}{2}$
$\Rightarrow\left(\alpha_{1}\left(1-\alpha_{1}\right) \alpha_{2}\left(1-\alpha_{2}\right) \ldots \ldots \ldots . . \alpha_{2018}\left(1-\alpha_{2018}\right)\right)^{\frac{1}{2}} \leq\left(\frac{1}{2}\right)^{2018}$
\Rightarrow Product of roots $\leq \frac{1}{2^{2018}}$
12. Ans. (A, C)

Sol. If given lines are coplanar then
$(\mathrm{kx}-4 \mathrm{y}+7 \mathrm{z}+16)+\lambda(4 \mathrm{x}+3 \mathrm{y}-2 \mathrm{z}+3)=0$ and
$(\mathrm{x}-3 \mathrm{y}+4 \mathrm{z}+6)+\mu(\mathrm{x}-\mathrm{y}+\mathrm{z}+1)=0$
represents same plane
$(4 \lambda+k) x+(3 \lambda-4) y+(7-2 \lambda) z+3 \lambda+16=0$
$(1+\mu) x-(3+\lambda) y+(\mu+4) z+\mu+6=0$
$\Rightarrow \frac{4 \lambda+\mathrm{k}}{1+\mu}=\frac{3 \lambda-4}{-(3+\mu)}=\frac{7-2 \lambda}{\mu+4}=\frac{3 \lambda+16}{\mu+6}$
$\Rightarrow \frac{4 \lambda+\mathrm{k}}{1+\mu}=\frac{\lambda+3}{1}=\frac{5 \lambda+9}{2}$
$\Rightarrow \lambda=-1$ and $\mu=\frac{1}{2}$ and $\mathrm{K}=7$
equation of plane will be
$3 x-7 y+9 z+13=0$
13. Ans. (B, D)

Sol. $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
total symmetre matrices $=3 \times 3 \times 3=27$
For singular matrices $|\mathrm{A}|=0$
i.e. $\mathrm{ad}-\mathrm{bc}=0$

$$
\mathrm{ad}=\mathrm{bc}
$$

when $\mathrm{ad}=\mathrm{bc}=1$ then no. of matrices $=1$
when $\mathrm{ad}=\mathrm{bc}=4$ then no. of matrices $=1$
when $\mathrm{ad}=\mathrm{bc}=9$ then no. of matrices $=1$
when $\mathrm{ab}=\mathrm{cd}=2$ then no. of matrices $=4$
when $\mathrm{ab}=\mathrm{cd}=3$ then no. of matrices $=4$
when $\mathrm{ab}=\mathrm{cd}=6$ then no. of matrices $=4$
total number of singular matrices $=15$

14. Ans. (A, B)

Sol. $\mathrm{f}^{\prime}(\mathrm{x})-3 \mathrm{x}^{2} \mathrm{f}(\mathrm{x})>0 \quad \forall \mathrm{x} \geq 1$
$\Rightarrow \frac{d}{d x}\left(\mathrm{e}^{-\mathrm{x}^{3}} \mathrm{f}(\mathrm{x})\right)>0 \quad \forall \mathrm{x} \geq 1$
$\Rightarrow \mathrm{e}^{-\mathrm{x}^{3}} \mathrm{f}(\mathrm{x}) \geq \mathrm{e}^{-1} \mathrm{f}(1) \Rightarrow \mathrm{e}^{-\mathrm{x}^{3}} \mathrm{f}(\mathrm{x}) \geq \mathrm{e}$
$\Rightarrow \mathrm{f}(\mathrm{x}) \geq \mathrm{e}^{\mathrm{x}^{3}+1} \forall \mathrm{x} \geq 1$

$$
\mathrm{f}(\mathrm{x}) \geq \mathrm{e}^{2}
$$

15. Ans. (A, C)

Sol. $f(x)=g\left(\frac{1}{x^{5}}\right) e^{-\frac{1}{x^{6}}}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{g\left(\frac{1}{x^{5}}\right)}{\frac{1}{e^{x^{6}}}} \\
& =\lim _{t \rightarrow \infty} \frac{g\left(t^{5}\right)}{e^{t^{6}}}=0
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x} \\
& =\lim _{x \rightarrow 0} \frac{g\left(\frac{1}{x^{5}}\right) e^{-\frac{1}{x^{6}}}}{x}=\lim _{x \rightarrow 0} \frac{g\left(\frac{1}{x^{5}}\right)}{x e^{\frac{1}{x^{6}}}} \\
& =\lim _{t \rightarrow \infty} \frac{\operatorname{tg}\left(t^{5}\right)}{e^{t^{6}}}=0
\end{aligned}
$$

$\Rightarrow \mathrm{f}(\mathrm{x})$ is continuous and differentiable at $\mathrm{x}=0$

SECTION-IV

1. Ans. (6)

Sol. $\omega^{23}=1$

$$
\begin{aligned}
& \mathrm{N}=\sum_{\mathrm{k}=1}^{22} \frac{1}{1+\omega^{8 \mathrm{k}}+\omega^{16 \mathrm{k}}} \\
& =\sum_{\mathrm{k}=1}^{22}\left(\frac{1-\omega^{8 \mathrm{k}}}{1-\omega^{24 \mathrm{k}}}\right) \\
& =\sum_{\mathrm{k}=1}^{22}\left(\frac{1-\omega^{8 \mathrm{k}}}{1-\omega^{\mathrm{k}}}\right) \\
& =\sum_{\mathrm{k}=1}^{22}\left[1+\omega^{\mathrm{k}}+\omega^{2 \mathrm{k}}+\ldots . . \omega^{7 \mathrm{k}}\right] \\
& =22+\sum_{\mathrm{k}=1}^{22}\left(\omega^{\mathrm{k}}\right)+\sum_{\mathrm{k}=1}^{22}\left(\omega^{2 \mathrm{k}}\right)+\ldots . \sum_{\mathrm{k}=1}^{22}\left(\omega^{7 \mathrm{k}}\right) \\
& =22-7=15
\end{aligned}
$$

2. Ans. (6)

Sol. $\frac{\mathrm{x}^{2}}{16}+\frac{\mathrm{y}^{2}}{1}=1$
$\mathrm{a}^{2}=16, \mathrm{~b}^{2}=1$
$\mathrm{a}=4, \mathrm{~b}=1$
let $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ then P, Q will be $\mathrm{P}\left(\mathrm{x}_{1}, \frac{\mathrm{y}_{1}}{4}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \frac{\mathrm{y}_{2}}{4}\right)$
mid point of $A B$ will be $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ mid point of PQ will be
$\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{8}\right)=(\mathrm{h}, \mathrm{k})$
\Rightarrow mid point of $A B$ will be $(\mathrm{h}, 4 \mathrm{k})$
let point $\mathrm{S}(\mathrm{t}, \mathrm{t}+8)$ be a point on $\mathrm{y}=\mathrm{x}+8$
$A B$ is chord of contact of $x^{2}+y^{2}=16$
$\Rightarrow \mathrm{xt}+\mathrm{y}(\mathrm{t}+8)=16$
AB as chord whose mid point is (h, 4 k)
$\mathrm{xh}+\mathrm{y}(4 \mathrm{k})=\mathrm{h}^{2}+16 \mathrm{k}^{2}$
$\frac{\mathrm{t}}{\mathrm{h}}=\frac{\mathrm{t}+8}{4 \mathrm{k}}=\frac{16}{\mathrm{~h}^{2}+16 \mathrm{k}^{2}}$
$\Rightarrow \mathrm{t}=\frac{16 \mathrm{~h}}{\mathrm{~h}^{2}+16 \mathrm{k}^{2}}$ and $\mathrm{t}+8=\frac{64 \mathrm{k}}{\mathrm{h}^{2}+16 \mathrm{k}^{2}}$

$\Rightarrow \frac{16 \mathrm{~h}}{\mathrm{~h}^{2}+16 \mathrm{k}^{2}}+8=\frac{64 \mathrm{k}}{\mathrm{h}^{2}+16 \mathrm{k}^{2}}$
$\Rightarrow 2 \mathrm{~h}+\left(\mathrm{h}^{2}+16 \mathrm{k}^{2}\right)=8 \mathrm{k}$
$\Rightarrow \mathrm{x}^{2}+16 \mathrm{y}^{2}+2 \mathrm{x}-8 \mathrm{y}=0$
$x^{2}+\alpha y^{2}+\beta x+\gamma y=0$
$\Rightarrow \alpha=16, \beta=2, \gamma=-8$
$\Rightarrow \alpha-\beta+\gamma=16$
3. Ans. (1)

Sol. $\mathrm{P}\left(\mathrm{at}_{1} \mathrm{t}_{2}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right)$
$\mathrm{S}\left(\mathrm{at}_{3}{ }^{2}, 2 \mathrm{at}_{3}\right)$
$A\left(a t_{1} t_{3}, a\left(t_{1}+t_{3}\right)\right)$
$B\left(a t_{2} t_{3}, a\left(t_{2}+t_{3}\right)\right)$
Let $\mathrm{PA}: \mathrm{PQ}=\lambda: 1$
Using section formula $\lambda=\frac{t_{3}-t_{2}}{t_{1}-t_{2}}$

$\Rightarrow \frac{\mathrm{PA}}{\mathrm{PQ}}=\frac{\mathrm{t}_{3}-\mathrm{t}_{2}}{\mathrm{t}_{1}-\mathrm{t}_{2}}$

Similarly $\frac{P B}{P R}=\frac{t_{1}-t_{3}}{t_{1}-t_{2}}$
$\Rightarrow \frac{\mathrm{PA}}{\mathrm{PQ}}+\frac{\mathrm{PB}}{\mathrm{PR}}=1$

4. Ans. (0)

Sol. $S=\sum_{r=0}^{n}(-1)^{r n} C_{r} \frac{1+r x}{(1+n x)^{r}}$
(let $\mathrm{n}=2018, \mathrm{x}=\ln 2$)
$=\sum_{r=0}^{n}(-1)^{r} \frac{{ }^{n} C_{r}}{(1+n x)^{r}}+\sum_{r=0}^{n}(-1)^{r} \cdot \frac{n}{r} \cdot{ }^{n-1} C_{r-1} \frac{r x}{(1+n x)^{r}}$
$=\sum_{r=0}^{n}(-1)^{r} \frac{{ }^{n} C_{r}}{(1+n x)^{r}}-\frac{n x}{(1+n x)} \sum_{r=0}^{n}(-1)^{r-1}{ }^{n-1} C_{r-1} \frac{1}{(1+n x)^{r-1}}$
$=\left(1-\frac{1}{1+\mathrm{nx}}\right)^{\mathrm{n}}-\frac{\mathrm{nx}}{1+\mathrm{nx}}\left(1-\frac{1}{1+\mathrm{nx}}\right)^{\mathrm{n}-1}$
$=\left(\frac{\mathrm{nx}}{1+\mathrm{nx}}\right)^{\mathrm{n}}-\frac{\mathrm{nx}}{1+\mathrm{nx}} \cdot\left(\frac{\mathrm{nx}}{1+\mathrm{nx}}\right)^{\mathrm{n}-1}=0$

5. Ans. (3)

Sol. $I_{n}=\int_{0}^{\frac{3 \pi}{2}}(\ln |\sin x|) \cos (2 n x) d x$ applying integration by parts

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{n}}=\left\{\ln |\sin \mathrm{x}| \cdot \frac{\sin 2 \mathrm{nx}}{2 \mathrm{n}}\right\}_{0}^{\frac{3 \pi}{2}}-\int_{0}^{\frac{3 \pi}{2}} \frac{\cot \mathrm{x} \cdot \sin 2 \mathrm{nx}}{2 \mathrm{n}} \mathrm{dx} \\
& \mathrm{I}_{\mathrm{n}}=0-\frac{1}{2 \mathrm{n}} \mathrm{I}_{\mathrm{n}}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{n}}^{\prime}=\int_{0}^{\frac{3 \pi}{2}} \frac{\cos \mathrm{x} \cdot \sin 2 \mathrm{nx}}{\sin \mathrm{x}} \mathrm{dx} \\
& \mathrm{I}_{\mathrm{n}}^{\prime}-\mathrm{I}_{\mathrm{n}-1}^{\prime}=\int_{0}^{\frac{3 \pi}{2}} \frac{\cos \mathrm{x}(\sin 2 \mathrm{nx}-\sin (2 \mathrm{n}-2)) \mathrm{x}}{\sin \mathrm{x}} \mathrm{dx} \\
& \quad=\int_{0}^{\frac{3 \pi}{2}} \frac{2 \cos \mathrm{x} \cdot \cos (2 \mathrm{n}-1) \mathrm{x} \sin \mathrm{x}}{\sin \mathrm{x}} \mathrm{dx} \\
& \mathrm{I}_{\mathrm{n}}^{\prime}-\mathrm{I}_{\mathrm{n}-1}^{\prime}=\int_{0}^{\frac{3 \pi}{2}} 2 \cos (2 \mathrm{n}-1) \mathrm{x} \cdot \cos \mathrm{x} d \mathrm{dx}=0 \\
& \mathrm{I}_{\mathrm{n}}^{\prime}=\mathrm{I}_{\mathrm{n}-1}^{\prime}=\mathrm{I}_{\mathrm{n}-2}^{\prime}=\ldots \ldots . \mathrm{I}_{1}^{\prime} \\
& \mathrm{I}_{\mathrm{n}}^{\prime}=\int_{0}^{\frac{3 \pi}{2}} \frac{\sin 2 \mathrm{x} \cos \mathrm{x}}{\sin \mathrm{x}} \mathrm{dx} \\
& \frac{3 \pi}{2} \\
& =\int_{0} 2 \cos ^{2} \mathrm{x} d \mathrm{dx}=\int_{0}^{\frac{3 \pi}{2}}(1+\cos 2 \mathrm{x}) \mathrm{dx} \\
& =\frac{3 \pi}{2} \\
& \mathrm{I}_{\mathrm{n}}=-\frac{3 \pi}{4 \mathrm{n}} \\
& 12 \mathrm{I}_{3}=-3 \pi \\
& 16 \mathrm{I}_{2}=-6 \pi \\
& \Rightarrow 12 \mathrm{I}_{3}-16 \mathrm{I}_{2}=3 \pi
\end{aligned}
$$

