PAPER-2

PART-1 : PHYSICS SOLUTION

SECTION-I

1. Ans. (A)

Sol. The diagram shows limiting case for penetration into the liquid.
Snell's law at S_{1}
$\Rightarrow \quad \sin \phi=\frac{1}{n^{\prime}}$
Snell's law for S_{2}
$\Rightarrow \quad \sin \theta=\frac{\mathrm{n}}{\mathrm{n}^{\prime}}$
\sin rule in triangle $\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{O}$
$\Rightarrow \quad \frac{\sin \phi}{\mathrm{r}}=\frac{\sin (\pi-\theta)}{\mathrm{R}}$
Solving the above equations we get

$r=\frac{R}{n}$

2. Ans. (B)

Sol. $\mathrm{E}=2 \times \frac{60}{75} \times\left(\frac{10000}{100}\right)=160$ volt; $\mathrm{E}=\mathrm{E}_{0}$
$\frac{\ell_{1}}{\ell_{2}}\left(\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)$
$\frac{\Delta \mathrm{E}}{\mathrm{E}}=\left|\frac{\Delta \ell_{1}}{\ell_{1}}\right|+\left|\frac{\Delta \ell_{2}}{\ell_{2}}\right|+\left|\frac{\Delta\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right|+\left|\frac{\Delta \mathrm{R}_{1}}{\mathrm{R}_{1}}\right|$
$\Rightarrow \Delta \mathrm{E}=0.64$ volts
3. Ans. (A)
4. Ans. (D)

Sol. $+2 \mathrm{E}+\mathrm{E}-4 \mathrm{E}+\mathrm{I}_{1} \mathrm{R}=0$
$\Rightarrow \quad \mathrm{I}_{1}=\mathrm{E} / \mathrm{R}$
$\mathrm{I}_{2}=0$
$\mathrm{I}_{3}=2 \mathrm{E} / \mathrm{R}$
$0+4 \mathrm{E}-13 \mathrm{E}+\mathrm{I}_{4}(3 \mathrm{R})=0$
$\Rightarrow \quad \mathrm{I}_{4}=3 \mathrm{E} / \mathrm{R}$

5. Ans. (A)

Sol.

If pulley is ideal,
$\mathrm{T}=0$
$\mathrm{a}_{\mathrm{B}}=\mathrm{g} \downarrow$
$\mathrm{a}_{\mathrm{P}}=\frac{\mathrm{a}_{1}+\mathrm{a}_{2}}{2}$
6. Ans. (B)

Sol.

For condition of equilibrium :
B $=\mathrm{mg}$
$\rho[\mathrm{A}]\left[\mathrm{h}_{1}+\mathrm{h}_{2}\right] \mathrm{g}=\sigma_{1} \mathrm{~A} \cdot \mathrm{~h}_{1} \mathrm{~g}+\sigma_{2} \mathrm{Ah}_{2} \mathrm{~g}$
$\rho h_{1}+\rho h_{2}=\sigma_{1} h_{1}+\sigma_{2} h_{2}$
$h_{2}\left(\rho-\sigma_{2}\right)=h_{1}\left(\sigma_{1}-\rho\right)$
$\frac{\mathrm{h}_{2}}{\mathrm{~h}_{1}}=\frac{\left(\sigma_{1}-\rho\right)}{\left(\rho-\sigma_{2}\right)}$
7. Ans. (A)

Sol. $N=\frac{m^{2}}{R} \quad f_{\max }=\mu N=\frac{\mu \mathrm{mv}^{2}}{R}$
\Rightarrow Retardation $\mathrm{a}=\frac{\mathrm{f}_{\max }}{\mathrm{m}}=\frac{\mu \mathrm{v}^{2}}{\mathrm{R}}$
$\Rightarrow \quad-\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mu \mathrm{v}^{2}}{\mathrm{R}}$
$\Rightarrow-\int_{\mathrm{v}_{0}}^{\mathrm{v}} \frac{\mathrm{dv}}{\mathrm{v}^{2}}=\frac{\mu}{\mathrm{R}} \int_{0}^{\mathrm{t}} \mathrm{dt} \quad \mathrm{v}=\mathrm{v}_{0} /\left(1+\frac{\mu \mathrm{v}_{0} \mathrm{t}}{\mathrm{R}}\right)$
8. Ans. (A)

At steady state, $\mathrm{Q}=\frac{\mathrm{CV}}{3}$ on each capacitor.

At t $=0$
$\mathrm{q}=\frac{\mathrm{CV}}{3}, \mathrm{i}=0$
$q=\frac{C V}{3} \cos (\omega t)$
$\mathrm{i}=-\frac{\mathrm{da}}{\mathrm{dt}}=\frac{\mathrm{CV}}{3} \omega \sin (\omega \mathrm{t})$
$\omega=\sqrt{\frac{1}{\mathrm{LC}_{\text {eq }}}}$
$\mathrm{C}_{\text {eq }}=\frac{\mathrm{C}}{3}$
At $t=t_{0}$

For $Q_{\text {max }}$
$\left(\frac{\mathrm{Q}_{\text {max }}^{2}}{2 \mathrm{C}}\right) \times 2=\left(\frac{\mathrm{q}^{2}}{2 \mathrm{C}}\right) \times 2+\frac{1}{2} \mathrm{Li}^{2}$
9. Ans. (C)
10. Ans. (D)
11. Ans. (B)

Sol. $h v^{\prime}=h v-\frac{G M m}{R}=h v-\frac{G M h v}{C^{2} R}$
$\Rightarrow \mathrm{h} \nu^{\prime}=\mathrm{h} v\left(1-\frac{\mathrm{GM}}{\mathrm{C}^{2} \mathrm{R}}\right)$
or, $\quad \frac{v^{\prime}}{v}=1-\frac{G M}{c^{2} R}$
12. Ans. (C)

Sol. $\frac{v^{\prime}}{v}=1-\frac{G M}{c^{2} R}$

$$
\Rightarrow \quad \frac{\mathrm{GM}}{\mathrm{c}^{2} \mathrm{R}}=1-\frac{v^{\prime}}{v}
$$

$$
\frac{v-v^{\prime}}{v}=\frac{\Delta v}{v}=\operatorname{GRS}
$$

13. Ans. (B)

Sol. $\Delta \mathrm{x}=\left(\mu_{\text {air }} \mathrm{t}_{2}+\mu \mathrm{t}_{1}\right) \times 2$
$=\left(1 \mathrm{t}_{2}+\frac{3}{4} \mathrm{t}_{1}\right) 2$
$\Delta \mathrm{x}=2 \mathrm{t}_{2}+3 \mathrm{t}_{1}$
Since both rays suffer a phase difference of π on reflection, condition of constructive interference
$3 \mathrm{t}_{1}+2 \mathrm{t}_{2}=\mathrm{n} \lambda_{0}$
14. Ans. (C)

Sol. $\Delta \mathrm{x}=2 \times 70+3 \times 130$
$=530 \mathrm{~nm}=\mathrm{n} \lambda$
15. Ans. (C)

Sol. At $\mathrm{t}=0$

$\mathrm{R}=\frac{\mathrm{mV}}{\mathrm{qB}}=\frac{10 \times 5}{\pi \times 10}=\frac{5}{\pi}$
$\mathrm{T}=\frac{2 \pi \mathrm{~m}}{\mathrm{qB}}=\frac{2 \pi \times 10}{\pi \times 10}=2 \mathrm{sec}$
At $\mathrm{t}=0.5 \mathrm{sec}$,
$\mathrm{x}_{1}=2 \times 0.5=1 \mathrm{~m}$
At $\mathrm{t}=1 \mathrm{sec}$
$\mathrm{x}_{2}=2 \times 1=2 \mathrm{~m}$
$\sqrt{\mathrm{y}_{2}^{2}+\mathrm{z}_{2}^{2}}=2 \mathrm{R}=\frac{10}{\pi}$
At $\mathrm{t}=2 \mathrm{sec}, \mathrm{x}_{3}=2 \times 2=4$
$\mathrm{y}_{3}=0$
$\mathrm{z}_{3}=0$
16. Ans. (C)

Sol. If $\overrightarrow{\mathrm{E}}=(-40 \hat{\mathrm{j}}+30 \hat{\mathrm{k}})$
Net force : $q \vec{E}+q(\vec{V} \times \vec{B})=0$
Motion will be straight line
17. Ans. (B)

Sol. $\mathrm{d}=2 \mathrm{~mm}$
$\mathrm{D}=2 \mathrm{~m}$

$\mathrm{I}=\mathrm{I}_{0}+\mathrm{I}_{0}+2 \mathrm{I}_{0} \cos \phi \quad\left(\Delta \mathrm{x}=\frac{\mathrm{yd}}{\mathrm{D}}\right)$
$\phi=\frac{2 \pi}{\lambda} \Delta \mathrm{x}$
18. Ans. (B)

Sol. (1) Charge decays exponentially
(2) Charge on capacitor oscillates
(3) Current through inductor oscillates
(4) Current increases exponentially to reach a steady volve.
19. Ans. (D)

Sol. Angular velocity of $\operatorname{rod} \mathrm{BC} \omega^{\prime}=-\frac{\mathrm{d} \phi}{\mathrm{dt}}$
$\omega^{\prime}=\frac{\mathrm{v}_{\mathrm{c}}}{\mathrm{y}}=\frac{1 \omega}{\mathrm{x}}$
$\frac{\mathrm{x}}{\cos \phi}=\frac{\mathrm{y}}{\cos (\theta+\phi)}=\frac{1}{\sin \theta}$
$\omega^{\prime}=\omega \frac{\sin \theta}{\cos \phi}$

Angular acceleration of $\operatorname{rod} \mathrm{BC}=\alpha=$ $\frac{\mathrm{d} \omega^{\prime}}{\mathrm{dt}}=-\omega^{2} \frac{\left(\cos ^{2} \phi \cos \theta+\sin \phi \sin ^{2} \theta\right)}{\cos ^{3} \phi}$
20. Ans. (C)

Sol. 22.95 eV
$\Rightarrow \mathrm{Li}^{2++}$ transitions from $\mathrm{n}=4$ to $\mathrm{n}=2$

1. Ans. (B)

Sol. (A) Theory based.
(B) Order of IE_{1} is $\mathrm{B}>\mathrm{T} \ell>\mathrm{Ga}>\mathrm{Al}>\mathrm{In}$

Order of IE_{2} will be $\mathrm{B}>\mathrm{Ga}>\mathrm{T} \ell>\mathrm{Al}>\mathrm{In}$
(C) $\mathrm{N}-\mathrm{N}$ bond energy is lower because of lone pair - lone pair repulsions.
(D) Thermochromic substances change colour on heating shown by both $\mathrm{ZnO} \& \mathrm{~S}_{4} \mathrm{~N}_{4}$.
2. Ans. (C)

Sol.

3. Ans. (B)

Sol. Radial part of any orbital follow the function.
$\Psi_{(r)}=K . \mathrm{e}^{-\sigma / \mathrm{K}} . \sigma^{\ell}$ (polynomial in σ)
All roots finite \& different \& non-zero.
(A) does not have " σ " $\therefore \mathrm{s}$ - orbital $\therefore \theta$ expression cannot be present, hence incorrect.
(B) Contains " $\sigma^{1 "} \quad \therefore \mathrm{p}$ - orbital which can have $\sin \theta \cos \phi$ as its angular wavefunction.
(C) The polynomial in σ does not have real roots.
(D) Contains " $\sigma^{1 "} \therefore$ P-orbital which cannot have $\left(3 \cos ^{2} \theta-1\right)$ as its angular component.
4. Ans. (C)

Sol. (A) These use distillation as one method of purification.
(B) In partial roasting $\mathrm{Cu} \& \mathrm{SO}_{2}$ are obtained.
(C) When H_{2} is used as reducing agent

$$
\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g}) \text { or }(\ell)} \quad \Delta \mathrm{S}=-\mathrm{ve}
$$

\therefore Slope of $\Delta \mathrm{G}^{\mathrm{o}}$ vs T is +ve , hence cannot be used at high temperatures.
(D) Lead can be obtained from reduction by Carbon also.
5. Ans. (B)

Sol.

6. Ans. (B)

Sol. $\Delta T_{f}=i \times k_{f} \times m$
$\therefore 3.5 \times 10^{-3}=\mathrm{i} \times 2 \times 10^{-3}$
$\therefore \mathrm{i}=1.75$
$\mathrm{H}_{1-\alpha} \rightleftharpoons \mathrm{H}_{\alpha}^{+}+\mathrm{A}_{\alpha}^{-}$
$1+\alpha=\mathrm{i} \quad \therefore \alpha=0.75$
(A) $\alpha=0.75$ when conc. is 0.001 not 0.01
(B) $0.75=\frac{\lambda_{m}}{460}$

$$
\lambda_{\mathrm{m}}=345 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}
$$

(C) As conc. $\downarrow \lambda_{\mathrm{m}} \uparrow$ $\therefore \lambda_{\mathrm{m}}$ at 10^{-4} should be greater than $345 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

7. Ans. (C)

Sol. (A) Theory based true statement.
(B) Borax in aq. solution gives Boric acid \& its salt.
(C) $\mathrm{B}_{2} \mathrm{H}_{6}$ with excess NH_{3} at low temperature gives $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$ which is aromatic but more reactive than benzene.
(D) Theory based true statement.
8. Ans. (B)

Sol. $\mathrm{P} / \mathrm{P}_{\mathrm{C}} \& \mathrm{~V}_{\mathrm{m}} / \mathrm{V}_{\mathrm{C}}$ are reduced pressure \& reduced volume \& as per law of corresponding states in such cases reduced temperatures should also be same.
$\therefore \quad \frac{T_{A}}{T_{C A}}=\frac{T_{B}}{T_{C B}} \quad \therefore \frac{T_{A}}{T_{B}}=\frac{T_{C A}}{T_{C B}}$
9. Ans. (C)

Sol. Distortion will occur when there is unsymmetrical filling of electrons in d - orbital $\left(\mathrm{t}_{2 \mathrm{~g}} \& \mathrm{e}_{\mathrm{g}}\right)$.

(A) \square | 1 | 1 |
| :--- | :--- |
| symmetrical | |

(B) \square| 1 | 1 |
| :--- | :--- |
| symmetrical | |

(C)

1	unsymmetrical

(D)

\square symmetrical
10. Ans. (B)

Sol. (A) Cu^{2+} has d^{9} configuration hence there will be distortions.
(B) [e_{g} at end]. The $t_{2 g}$ orbitals are slightly away from ligands as compared to e_{g} orbitals which are head on to ligand molecules hence e_{g} orbitals will show significant interactions.
(C) Pt^{2+} will also have significant distortions because of high nuclear charge.
(D) $\left[\mathrm{CrF}_{6}{ }^{4-}\right] \mathrm{CrF}_{6}{ }^{4-}$ have Cr^{2+} which is d^{4} configuration \& F^{-}is weak ligand.
\therefore There will be distortion $\&$ hence $\mathrm{Cr}-\mathrm{F}$ bond length will not be same.

11. Ans. (C)

Sol. As per Clausius inequality

$$
\begin{aligned}
& T d S \geq d U-w \\
& T d S \geq d U+P d V-w_{n P V}
\end{aligned}
$$

(A) $\mathrm{dU} \leq \mathrm{w}_{\mathrm{nPV}} \quad($ if $\mathrm{S} \rightarrow \& \mathrm{~V} \rightarrow$)
(B) $\mathrm{dH} \leq \mathrm{W}_{\mathrm{nPV}} \quad($ if $\mathrm{S} \rightarrow \& \mathrm{P} \rightarrow$)
(C) $\mathrm{d}(\mathrm{H}-\mathrm{TS}) \leq \mathrm{w}_{\mathrm{nPV}}($ if $\mathrm{P} \rightarrow \& \mathrm{~T} \rightarrow)$
$\therefore \Delta \mathrm{G} \leq \mathrm{w}_{\mathrm{nPV}} \quad(\mathrm{P} \rightarrow \& \mathrm{~T} \rightarrow) \quad \therefore$ True statement.
12. Ans. (C)

Sol. The balanced reaction is :

Number of $\mathrm{e}^{-}=30$
$\Delta \mathrm{G}^{\circ}=-30 \times 96500 \times 0.1$
$=-289.5 \mathrm{~kJ}$
$\left|\Delta G^{\circ}\right|$ gives maximum non $P V$ work which can be extracted.
(A) Per mole of toulene $=\frac{289.5}{5}=57.9 \mathrm{~kJ}$
(B) Per mole of $\mathrm{KMnO}_{4}=\frac{289.5}{6}=48.25 \mathrm{~kJ}$
(C) Per mole of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{289.5}{9}=32.17 \mathrm{~kJ}$
(D) Per mole of $\mathrm{MnSO}_{4}=\frac{289.5}{6}=48.25 \mathrm{~kJ}$
$\therefore \mathrm{C}$ is correct.

13. Ans. (D)

Sol. Diastereoisomers are stereoisomers, which are not mirror images of each other.
14. Ans. (B)

Sol.

15. Ans. (C)

Sol. $\mathrm{AgBr}_{\text {(yellow coloured solid) }} \Rightarrow \mathrm{A}$
$\mathrm{AgBr}_{(\mathrm{g})}+\mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br}$
$\mathrm{AgBr}_{(s)}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Na}_{3}\left[\mathrm{Ag}_{(\mathrm{B})}^{\left.\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]}+\mathrm{NaBr}\right.$
$\mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2} \xrightarrow{\Delta} \underset{\text { (C) }}{\mathrm{Ag}_{2} \mathrm{~S}} \underset{\text { (Black) }}{\downarrow}\right.$
(A) $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ acts as monodentate ligand.
(B) $\mathrm{Ag}_{2} \mathrm{~S}+\mathrm{AgNO}_{3} \rightarrow+$ vely charged sol.
(C) $\mathrm{AgBr}+\mathrm{CN}^{-} \rightarrow\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$

Soluble complex
(D) AgBr has Rock salt structure
16. Ans. (B)

Sol. $\mathrm{AgBr}+$ conc. $\mathrm{HCl}+$ conc. $\mathrm{HNO}_{3} \longrightarrow \underset{\text { White }}{\mathrm{AgCl}} \downarrow$
$\mathrm{AgCl}_{(s)}+\mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$
$\mathrm{AgCl}_{(\mathrm{g})}+\mathrm{NaCl} \longrightarrow \underset{\text { solublecomplex }}{\mathrm{AgCl}_{2}^{-}}$
(A) Between $\mathrm{AgBr} \& \mathrm{AgCl}$; lather is more soluble.
(B) The complex is $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$which will have lower standard reduction potential as compared to $\mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}$.

$$
\mathrm{E}_{\left.\mathrm{Ag}(\mathrm{NH})_{3}\right)_{2}^{+} / \mathrm{Ag}}^{\circ}=\mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\circ}-\frac{0.059}{1} \log \mathrm{~K}_{\mathrm{f}}
$$

where K_{f} is formation constant of complex which is very high.
(C) On the basis of reaction.
(D) $\mathrm{AgCl}+\mathrm{AgNO}_{3} \rightarrow$ +vely charge colloid which shows tyndall effect.
17. Ans. (B)

Sol. (P)

(R)

(S)

18. Ans. (C)

Sol. $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$
\because Elementary reaction
$\therefore \mathrm{R}=\mathrm{K}[\mathrm{A}]^{2}[\mathrm{~B}]^{1}$
\therefore When $[\mathrm{A}]_{0}=0.1 \&[\mathrm{~B}]_{0}=10^{-9}$

Reaction follows first order \& half life of A not defined.
$\therefore \mathrm{P} \rightarrow$ (3)
When $[\mathrm{A}]_{0}=10^{-4} \mathrm{M} \&[\mathrm{~B}]_{0}=10^{-1} \mathrm{M}$
Reaction follows second order
$\therefore \mathrm{t}_{3 / 4}=\mathrm{t}_{1 / 2}+2 \times \mathrm{t}_{1 / 2}=3 \mathrm{t}_{1 / 2}$
and half life of B is not defined.
$\therefore \mathrm{Q} \rightarrow$ (4).
When $[\mathrm{A}]_{0}=0.1 \mathrm{M} \&[\mathrm{~B}]_{0}=0.05 \mathrm{M}$
$\because[\mathrm{A}]_{0}=2[\mathrm{~B}]_{0}$
\therefore Reaction will follow $3^{\text {rd }}$ order kinetics $\&$ half life of A \& B both will be same.
When $[\mathrm{A}]_{0}=0.1 \mathrm{M} \&[\mathrm{~B}]_{0}=0.2 \mathrm{M}$
Half life of A \& half life of B will be different.

19. Ans. (B)

Sol. (P) $\mathrm{Mg}_{2} \mathrm{C}_{3} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH} \xrightarrow[\mathrm{NH}_{4} \mathrm{OH}]{\mathrm{Cu}_{2} \mathrm{Cl}_{2}}$ Red colour
(Q)

$\xrightarrow{\text { Neutral } \mathrm{FeCl}_{3}}$ Purple colour
$(\mathrm{R}) ~ E t h a n o l \xrightarrow{\mathrm{Et}_{2} \mathrm{SO}_{4}}$ Ether $\xrightarrow{\text { air }}$ Peroxide of ether $\xrightarrow{\mathrm{FeSO}_{4}, \mathrm{KCNS}}$ Red colour
(S)

20. Ans. (C)

Sol. (P) AlCl_{3} in aq. solution exist as $\mathrm{Al}_{(\mathrm{aq})}^{+3} \& \mathrm{Cl}_{(\mathrm{aq)}}^{-}$ions cannot act as an oxidising or reducing agent forms $\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$with excess KOH .
(Q) $\mathrm{I}_{2} \mathrm{O}_{5}$ act an oxidising agent getting converted to I_{2}.

In aq. solution gets converted to HIO_{3} which dissociates to give $\mathrm{H}^{+} \& \mathrm{IO}_{3}{ }^{-}$.
No complex formation with KOH.
(R) Generally used as a reducing agent.

Reacts with KOH to form complex.
Gives insoluble basic salt in aq. solution.
$\mathrm{SnCl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Sn}(\mathrm{OH}) \mathrm{Cl}_{(\mathrm{s})}+\mathrm{HCl}_{(\mathrm{aq} .)}$
(S) Strong oxidising agent

Insoluble in water.
Forms complex with KOH.

SECTION-1

1. Ans. (C)

Sol.

$$
\begin{array}{ll}
& a_{0}=1, a_{1}=0 \\
& a_{n}=3 a_{n-1}-2 a_{n-2} \\
& \left(a_{n}-2 a_{n-1}\right)=\left(a_{n-1}-2 a_{n-2}\right) \\
\therefore \quad & a_{n}-2 a_{n-1}=\operatorname{constant}(k) \\
\therefore \quad & a_{1}-2 a_{0}=k \Rightarrow k=-2 \\
\therefore \quad & a_{n}=2 a_{n-1}-2 \\
\Rightarrow \quad & \left(a_{n}-2\right)=2\left(a_{n-1}-2\right) \\
\Rightarrow \quad & b_{n}=2 \cdot b_{n-1} \\
\therefore \quad & b_{0}, b_{1}, b_{2}, b_{3}, \ldots \ldots ., b_{n} \text { are in G.P. } \\
& b_{n}=b_{0} \cdot 2^{n} \\
& b_{n}=(-1) \cdot 2^{n} \\
& a_{n}-2=-2^{n} \\
& a_{n}=2-2^{n}
\end{array}
$$

2. Ans. (B)

Sol. $10 \sin ^{4} \alpha+15 \cos ^{4} \alpha=6$

$$
\Rightarrow \quad 10 \sin ^{4} \alpha+15\left(1-\sin ^{2} \alpha\right)^{2}=6
$$

$$
\Rightarrow \quad 10 \sin ^{4} \alpha+15\left(\sin ^{4} \alpha-2 \sin ^{2} \alpha+1\right)=6
$$

$$
\Rightarrow \quad 25 \sin ^{4} \alpha-30 \sin ^{2} \alpha+9=0
$$

$$
\Rightarrow \quad\left(5 \sin ^{2} \alpha-3\right)^{2}=0
$$

$$
\Rightarrow \quad \sin ^{2} \alpha=\frac{3}{5} \Rightarrow \cos ^{2} \alpha=\frac{2}{5}
$$

$$
\therefore \quad S=9 \operatorname{cosec}^{4} \alpha+4 \sec ^{4} \alpha
$$

$$
\begin{aligned}
& S=9 \cdot\left(\frac{25}{9}\right)+4\left(\frac{25}{4}\right) \\
& S=25+25 \\
& \frac{S}{25}=2
\end{aligned}
$$

3. Ans. (A)

Sol. $\mathbf{D}=\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|$
Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}$, we get,
$\mathrm{D}=\left|\begin{array}{lll}\mathrm{x}_{1}+\mathrm{y}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2}+\mathrm{y}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3}+\mathrm{y}_{3} & \mathrm{y}_{3} & 1\end{array}\right|=\left|\begin{array}{lll}-8 & \mathrm{y}_{1} & 1 \\ -8 & \mathrm{y}_{2} & 1 \\ -8 & \mathrm{y}_{3} & 1\end{array}\right|=0$

4. Ans. (B)

Sol. Given $a_{n+1}=a_{n}-4 n+3$
Now

$$
\begin{aligned}
& a_{k}-a_{1}=\sum_{n=1}^{k-1}\left(a_{n+1}-a_{n}=\sum_{n=1}^{k-1}(4 n+3)\right. \\
& =4(k-1) \frac{(k)}{2}+3(k-1)=2 k^{2}+k-3 \\
& \Rightarrow a_{k}=2 k^{2}+k-3
\end{aligned}
$$

So,
$\lim _{\mathrm{k} \rightarrow \infty} \frac{\sqrt{2 \mathrm{k}^{2}+\mathrm{k}-3}+\sqrt{2(4 \mathrm{k})^{2}+(4 \mathrm{k})-3}+\ldots .+\sqrt{2\left(4^{10} \mathrm{k}\right)^{2}+\left(4^{10} \mathrm{k}\right)-3}}{\sqrt{2 \mathrm{k}^{2}+\mathrm{k}-3}+\sqrt{2(2 \mathrm{k})^{2}+(2 \mathrm{k})-3}+\ldots+\sqrt{2\left(2^{10} \mathrm{k}\right)^{2}+\left(2^{10} \mathrm{k}\right)-3}}$
$=\lim _{\mathrm{k} \rightarrow \infty} \frac{\sqrt{2+\frac{1}{\mathrm{k}}-\frac{3}{\mathrm{k}^{2}}}+\sqrt{2(4)^{2}+\frac{4}{\mathrm{k}}-\frac{3}{\mathrm{k}^{2}}}+\ldots .+\sqrt{2\left(4^{10}\right)^{2}+\frac{4^{10}}{\mathrm{k}}-\frac{3}{\mathrm{k}^{2}}}}{\sqrt{2+\frac{1}{\mathrm{k}}-\frac{3}{\mathrm{k}^{2}}}+\sqrt{2(2)^{2}+\frac{2}{\mathrm{k}}-\frac{3}{\mathrm{k}^{2}}}+\ldots .+\sqrt{2\left(2^{10}\right)^{2}+\frac{2^{10}}{\mathrm{k}}-\frac{3}{\mathrm{k}^{2}}}}$
$=\frac{\sqrt{2}+\sqrt{2\left(4^{2}\right)}+\ldots+\sqrt{2\left(4^{10}\right)^{2}}}{\sqrt{2}+\sqrt{2\left(2^{2}\right)}+\ldots+\sqrt{2\left(2^{10}\right)^{2}}}=\frac{\sqrt{2}\left(1+4+4^{2}+\ldots+4^{10}\right)}{\sqrt{2}\left(1+2+2^{2}+\ldots+2^{10}\right)}$
$=\frac{\frac{1}{3}\left(4^{11}-1\right)}{2^{11}-1}=683$
5. Ans. (B)

Sol. $\mathrm{y}=\mathrm{x}^{\mathrm{n}-1} \ln \mathrm{x}$
$y_{1}=\frac{x^{n-1}}{x}+(n-1) x^{n-2} \ln x$
$y_{1}=x^{n-2}+(n-1) \cdot \frac{y}{x}$
$\mathrm{xy}_{1}=\mathrm{x}^{\mathrm{n}-1}+(\mathrm{n}-1) \mathrm{y}$
$\mathrm{xy}_{2}+\mathrm{y}_{1}=(\mathrm{n}-1) \mathrm{x}^{\mathrm{n}-2}+(\mathrm{n}-1) \mathrm{y}_{1}$
$x y_{2}+y_{1}=(n-1)\left(y_{1}-(n-1) \frac{y}{x}\right)+(n-1) y_{1}$
$\mathrm{xy}_{2}+\mathrm{y}_{1}=(\mathrm{n}-1) \mathrm{y}_{1}-(\mathrm{n}-1)^{2} \frac{\mathrm{y}}{\mathrm{x}}+(\mathrm{n}-1) \mathrm{y}_{1}$
$x^{2} y_{2}+x y_{1}=(n-1) x y_{1}-(n-1)^{2} y+(n-1) x y_{1}$
$\mathrm{x}^{2} \mathrm{y}_{2}+\mathrm{xy}_{1}(1-\mathrm{n}+1-\mathrm{n}+1)+(\mathrm{n}-1)^{2} \mathrm{y}=0$
$\mathrm{x}^{2} \mathrm{y}_{2}+\mathrm{xy}_{1}(3-2 \mathrm{n})+(\mathrm{n}-1)^{2} \mathrm{y}$
$\mathrm{f}(\mathrm{n})=3-2 \mathrm{n}$
$\mathrm{g}(\mathrm{n})=\mathrm{n}^{2}-2 \mathrm{n}+1$
$\mathrm{f}(\mathrm{n})-\mathrm{g}(\mathrm{n})=2-\mathrm{n}^{2}$
$\mathrm{f}(3)-\mathrm{g}(3)=2-9=-7$
$\mathrm{f}(4)+\mathrm{g}(4)=-5+9=4$
$f(5) \cdot g(5)=(-7)(16)=-112$
6. Ans. (D)

Sol. On integrating twice by parts taking $\mathrm{e}^{-\mathrm{x}}$ as second function we have
$I_{m}=\left[-\sin ^{m} x e^{-x}\right]_{0}^{\infty}-\int_{0}^{\infty} m \sin ^{m-1} x \cos x\left(-e^{-x}\right) d x$

$$
\begin{align*}
&= 0+m \int_{0}^{\infty}\left(\sin ^{m-1} x \cos x\right) e^{-x} d x \\
&= m\left[\left\{\sin ^{m-1} x \cos x\right\}\left(-e^{-x}\right)\right]_{0}^{\infty} \\
&+m \int_{0}^{\infty}\left[(m-1) \sin ^{m-2} x \cos ^{2} x-\sin ^{m} x\right] e^{-x} d x \\
&= 0+m(m-1) \int_{0}^{\infty} \sin ^{m-2} x\left(1-\sin ^{2} x\right) e^{-x} d x \\
&= m(m-1) \int_{0}^{\infty} e^{-x} \int_{0}^{\infty} e^{-x} \sin ^{m-2} x d x \\
&-m(m-1) \int_{0}^{m} e^{-x} \sin ^{m} x d x-m \int_{0}^{\infty} e^{-x} \sin ^{m} x d x \\
& I_{m}= m(m-1) I_{m-2}-m^{2} I_{m} \quad \\
& \text { or }\left(1+m^{2}\right) I_{m}=m(m-1) I_{m-2} \quad \ldots(i)
\end{align*}
$$

To evaluate I_{4}, put $\mathrm{m}=4,2$, successively in (i), so that
$17 \mathrm{I}_{4}=12 \mathrm{I}_{2}$ or $\mathrm{I}_{4}=\frac{12}{17} \mathrm{I}_{2}$
and $5 \mathrm{I}_{2}=2 \mathrm{I}_{0}$, i.e., $\mathrm{I}_{2}=\frac{2}{5} \mathrm{I}_{0}$
But $\mathrm{I}_{0}=\left[-\mathrm{e}^{-\mathrm{x}}\right]_{0}^{\infty}=1$
$\therefore \mathrm{I}_{4}=\frac{12}{17} \times \frac{2}{5} \times 1=\frac{24}{85}$

7. Ans. (D)

Sol. Plane through 3 points $x+y+z=1$ For circumcentre of the triangle.

$$
\begin{aligned}
& \quad \mathrm{x}^{2}+(\mathrm{y}-1)^{2}+\mathrm{z}^{2} \\
&=(\mathrm{x}-1)^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \\
&=\mathrm{x}^{2}+\mathrm{y}^{2}+(\mathrm{z}-1)^{2} \\
& \Rightarrow \quad-2 \mathrm{x}+1=-2 \mathrm{y}+1=-2 \mathrm{z}+1 \\
& \Rightarrow \quad \mathrm{x}=\mathrm{y}=\mathrm{z}=\frac{1}{3} \quad \text { as } \mathrm{x}+\mathrm{y}+\mathrm{z}=1
\end{aligned}
$$

8. Ans. (C)

Sol. Let $f(x)=x^{\frac{1}{x}}$
$\Rightarrow f^{\prime}(x)=x^{\frac{1}{x}}\left(\frac{\ln x-1}{x^{2}}\right)$
If $x>e$ then $f(x)$ is decreasing
$\because 2018>2017 \Rightarrow \mathrm{f}(2018)<\mathrm{f}(2017)$
$\Rightarrow(2018)^{\frac{1}{2018}}<(2017)^{\frac{1}{2017}}$
$\Rightarrow(2018)^{2017}<(2017)^{2018}$
$\because \lim _{\mathrm{x} \rightarrow \infty}\left\{\left((2017)^{2018}\right)^{\mathrm{n}}+\left((2018)^{2017}\right)^{\mathrm{n}}\right\}^{\frac{1}{\mathrm{n}}}$
$=\lim _{\mathrm{n} \rightarrow \infty}(2017)^{2018}\left\{1+\left(\frac{(2018)^{2017}}{(2017)^{2018}}\right)^{\mathrm{n}}\right\}^{\frac{1}{\mathrm{n}}}=(2017)^{2018}$

Paragraph for Questions 9 and 10

Sol.

$\mathrm{PA}+\mathrm{PB}<2$ and $\mathrm{PB}+\mathrm{PC}<2$
$\mathrm{PA}+\mathrm{PB}<2$
Region inside ellipse with foci A and B
$2 \mathrm{a}=2, \mathrm{a}=1$
$2 \mathrm{ae}=\frac{3}{2}-\frac{1}{2}=1$
$\mathrm{b}^{2}=\mathrm{a}^{2}-\mathrm{a}^{2} \mathrm{e}^{2}=1-\frac{1}{4}=\frac{3}{4}$
Equation of ellipse is
$\frac{(\mathrm{x}-1)^{2}}{1}+\frac{\mathrm{y}^{2}}{3 / 4}=1$
$\mathrm{PB}+\mathrm{PC}<2 \Rightarrow \mathrm{P}$ lies inside ellipse with foci B and C
Whose equation is $\frac{(x-2)^{2}}{1}+\frac{y^{2}}{3 / 4}=1$
Locus of P is shown by shaded region which is symmetric about x -axis
Area of region
$=4 \int_{1}^{3 / 2} \frac{\sqrt{3}}{2} \sqrt{1-(\mathrm{x}-2)^{2} \mathrm{dx}}=\sqrt{3}\left(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right)$
9. Ans. (A)
10. Ans. (B)

Paragraph for Questions 11 and 12
11. Ans. (C)

Sol.

Maximum possible number of solutions $=3$
12. Ans. (A)

Sol. $y=f(-|x|)$

Clearly non-differentiable at 2 points.

Paragraph for Question 13 to 14

Sol. $\frac{y^{\prime \prime}}{y^{\prime}}=\frac{2 y^{\prime}}{y} \Rightarrow \frac{y^{\prime}}{y^{2}}=k$
$\int \frac{\mathrm{dy}}{\mathrm{y}^{2}}=\int \mathrm{kdx} \Rightarrow-\frac{1}{\mathrm{y}}=\mathrm{kx}+\lambda$
since $(2,2)$ and $\left(8, \frac{1}{2}\right)$ lies on (1), we get C_{1}
: $\mathrm{xy}=4$
shortest distance between
$C_{1}: x y=4$ and $C_{2}: x^{2}+y^{2}=4$ is
$(2 \sqrt{2}-2)=(\sqrt{8}-2)$
Hence, $(a+b)=10$
13. Ans. (C)
14. Ans. (D)
15. Ans. (C)

Sol. $\mathrm{a}_{\mathrm{ij}}=(\mathrm{k})^{\mathrm{i}+\mathrm{j}}$
$A=\left[\begin{array}{lll}k^{2} & k^{3} & k^{4} \\ k^{3} & k^{4} & k^{5} \\ k^{4} & k^{5} & k^{6}\end{array}\right]$
$|\mathrm{A}|=\mathrm{k}^{12}(1+1+1-1-1-1)=0$
16. Ans. (B)

Sol. $A^{2}=3$ A

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{lll}
k^{2} & k^{3} & k^{4} \\
k^{3} & k^{4} & k^{5} \\
k^{4} & k^{5} & k^{6}
\end{array}\right]\left[\begin{array}{lll}
k^{2} & k^{3} & k^{4} \\
k^{3} & k^{4} & k^{5} \\
k^{4} & k^{5} & k^{6}
\end{array}\right] \\
& =\left[\begin{array}{lll}
k^{4}+k^{6}+k^{8} & k^{5}+k^{7}+k^{9} & k^{6}+k^{8}+k^{10} \\
k^{5}+k^{7}+k^{9} & k^{6}+k^{8}+k^{10} & k^{7}+k^{9}+k^{11} \\
k^{6}+k^{8}+k^{10} & k^{7}+k^{9}+k^{11} & k^{8}+k^{10}+k^{12}
\end{array}\right]
\end{aligned}
$$

$$
\Rightarrow A^{2}=k^{2}\left(1+k^{2}+k^{4}\right)\left[\begin{array}{lll}
k^{2} & k^{3} & k^{4} \\
k^{3} & k^{4} & k^{5} \\
k^{4} & k^{5} & k^{6}
\end{array}\right]
$$

$$
3 A=3\left[\begin{array}{lll}
k^{2} & k^{3} & k^{4} \\
k^{3} & k^{4} & k^{5} \\
k^{4} & k^{5} & k^{6}
\end{array}\right]
$$

Hence $\mathrm{k}^{2}\left(\mathrm{k}^{4}+\mathrm{k}^{2}+1\right)=3$
or $\mathrm{k}=0 \Rightarrow \mathrm{k}=0, \pm 1$
17. Ans. (D)
(P) Required probability $=\frac{1}{2}$
(Q) Required probability

$$
=\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{4}-\left(\frac{1}{2}\right)^{7}=\frac{47}{2^{7}}
$$

(R) Required probability $=\frac{4}{2^{7}}$
(S) There are five cases $0,1,2,3$, or 4 wins Required probability

$$
=\frac{1+7+15+10+1}{2^{7}}=\frac{34}{2^{7}}
$$

18. Ans. (B)

Sol. (P) $\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{b}})=(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{a}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{a}}) \overline{\mathrm{b}}$

$$
\begin{aligned}
& \bar{a} \times(\bar{a} \times(\bar{a} \times \bar{b}))=-(\bar{a} \times \bar{b}) \\
& \bar{a} \times(\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{b}}))))=(\overline{\mathrm{a}} \times \overline{\mathrm{b}})
\end{aligned}
$$

Similarly if $(4 n+1) \bar{a}$'s are there then product is $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$.
Hence $\mathrm{m}=1$.
(Q) Clearly the value is least when P is centroid of tetrahedron.
(R) Ceva's theorem.
(S) Image point of focus through any tangent lies on directrix.
Image points of focus through two given tan-
gents are $\left(-\frac{7}{5}, \frac{4}{5}\right)$ and $(-1,0)$.
Hence equation is directrix is $2 \mathrm{x}+\mathrm{y}+2=0$.
Semilatus rectum $=2 \sqrt{3}$
19. Ans. (A)

Sol. (P)

$$
\begin{aligned}
& \int \frac{2 x^{7}+3 x^{2}}{x^{10}-2 x^{5}+1} d x=\int \frac{x^{6}\left(2 x+\frac{3}{x^{4}}\right)}{x^{6}\left(x^{4}-\frac{2}{x}+\frac{1}{x^{6}}\right)} d x=\int \frac{2 x+\frac{3}{x^{4}}}{\left(x^{2}-\frac{1}{x^{3}}\right)^{2}} d x \\
& \text { Let } \quad x^{2}-\frac{1}{x^{3}}=t \Rightarrow\left(3 x+\frac{3}{x^{4}}\right) d x=d t \\
& =\int \frac{d t}{t^{2}}=-\frac{1}{t}+c=-\frac{x^{3}}{x^{5}-1}+c \\
& =\frac{x^{3}\left(x^{5}-1\right)}{\left(x^{5}-1\right)^{2}}+c=\frac{x^{3}-x^{8}}{\left(x^{5}-1\right)^{2}}+c
\end{aligned}
$$

(Q) $\quad\left|f\left((1+i \sqrt{3})^{n}\right)\right|$
$\left|f\left(2^{n} \cos n \frac{\pi}{3}+i \sin \frac{n \pi}{3}\right)\right|=2^{n}\left|\cos \frac{n \pi}{3}\right|$
$\sum_{n=1}^{6} \log _{2}\left(2^{n}\left|\cos \frac{n \pi}{3}\right|\right)$
$=\sum_{n=1}^{6} n+\log _{2}\left|\cos \frac{n \pi}{3}\right|$
$=\frac{6}{2}(6+1)+[-1-1+0-1-1+0]$
$=3 \times 7-4$
$=17$
(R) $\quad\left|z_{1}\right|=2,\left|z_{2}\right|=3$

$$
\begin{aligned}
& \frac{z_{1}}{z_{2}}=\frac{2}{3} e^{i \pi / 3} \\
& \frac{z_{1}}{z_{2}}=\frac{2}{3}\left(\frac{1+i \sqrt{3}}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\left|\frac{z_{1}+z_{2}}{z_{1}-z_{2}}\right| & =\left|\frac{\frac{2}{3}\left(\frac{1+i \sqrt{3}}{2}\right)+1}{\frac{2}{3}\left(\frac{1+i \sqrt{3}}{2}\right)-1}\right|=\left|\frac{4+i \sqrt{3}}{-2+i \sqrt{3}}\right| \\
& =\sqrt{\frac{16+3}{4+3}}=\sqrt{\frac{19}{7}}=\frac{\sqrt{133}}{7}
\end{aligned}
$$

(S) $\quad \mathrm{f}(\mathrm{z})=\mathrm{z}^{4}+\mathrm{a}_{1} \mathrm{z}^{3}+\mathrm{a}_{2} \mathrm{z}^{2}+\mathrm{a}_{3} \mathrm{z}+\mathrm{a}_{4}=0$

$$
\begin{align*}
& \mathrm{f}(\mathrm{ki})=\mathrm{k}^{4}-\mathrm{a}_{1} \mathrm{k}^{3} \mathrm{i}-\mathrm{a}_{2} \mathrm{k}^{2}+\mathrm{a}_{3} \mathrm{ki}+\mathrm{a}_{4}=0 \\
& \mathrm{k}^{4}-\mathrm{k}^{2} \mathrm{a}_{2}+\mathrm{a}_{4}=0 \quad \ldots(1) \tag{1}\\
& \mathrm{k}^{3} \mathrm{a}_{1}-\mathrm{ka}_{3}=0 \quad \ldots(2) \tag{2}\\
& \Rightarrow \quad \mathrm{k}^{2}=\frac{\mathrm{a}_{3}}{\mathrm{a}_{1}} \quad \text { as } \mathrm{k} \neq 0 \\
& \therefore \quad \frac{\mathrm{a}_{3}^{2}}{\mathrm{a}_{1}^{2}}-\frac{\mathrm{a}_{3} \mathrm{a}_{2}}{\mathrm{a}_{1}}+\mathrm{a}_{4}=0 \\
& \frac{\mathrm{a}_{3}^{2}}{\mathrm{a}_{1}^{2}}+\mathrm{a}_{4}=\frac{\mathrm{a}_{3} \mathrm{a}_{2}}{\mathrm{a}_{1}} \Rightarrow \frac{\mathrm{a}_{3}}{\mathrm{a}_{1} \mathrm{a}_{2}}+\frac{\mathrm{a}_{1} \mathrm{a}_{4}}{\mathrm{a}_{2} \mathrm{a}_{3}}=1
\end{align*}
$$

20. Ans. (D)

Sol. (P) ${ }^{9} \mathrm{C}_{4}+{ }^{9} \mathrm{C}_{4}+{ }^{9} \mathrm{C}_{4}+{ }^{9} \mathrm{C}_{3}$

$$
={ }^{10} \mathrm{C}_{5}+{ }^{10} \mathrm{C}_{4}={ }^{11} \mathrm{C}_{5}={ }^{11} \mathrm{C}_{6}
$$

$$
\text { (Q) } \quad={ }^{10} \mathrm{C}_{5}+{ }^{10} \mathrm{C}_{4}={ }^{11} \mathrm{C}_{5}={ }^{11} \mathrm{C}_{6}
$$

(R) ${ }^{9} \mathrm{C}_{5}+{ }^{9} \mathrm{C}_{5}=2 .{ }^{9} \mathrm{C}_{5}$

$$
={ }^{9} \mathrm{C}_{5}+{ }^{9} \mathrm{C}_{4}={ }^{10} \mathrm{C}_{5}
$$

$$
\text { (S) } \quad{ }^{10} \mathrm{C}_{5}=2 \cdot{ }^{9} \mathrm{C}_{5}
$$

