RITS-31
 JEE MAINS-2019 ANSWER KEY
 Code: 119717

PHYSICS		CHEMISTRY		MATHEMATICS	
1	$\mathbf{3}$	1	$\mathbf{2}$	1	$\mathbf{2}$
2	$\mathbf{1}$	2	$\mathbf{3}$	2	$\mathbf{1}$
3	$\mathbf{4}$	3	$\mathbf{1}$	3	$\mathbf{1}$
4	$\mathbf{2}$	4	$\mathbf{2}$	4	$\mathbf{3}$
5	$\mathbf{2}$	5	$\mathbf{4}$	5	$\mathbf{2}$
6	$\mathbf{3}$	6	$\mathbf{2}$	6	$\mathbf{2}$
7	$\mathbf{1}$	7	$\mathbf{2}$	7	$\mathbf{4}$
8	$\mathbf{3}$	8	$\mathbf{4}$	8	$\mathbf{3}$
9	$\mathbf{2}$	9	$\mathbf{2}$	9	$\mathbf{1}$
10	$\mathbf{2}$	10	$\mathbf{3}$	10	$\mathbf{3}$
11	$\mathbf{1}$	11	$\mathbf{4}$	11	$\mathbf{3}$
12	$\mathbf{3}$	12	$\mathbf{4}$	12	$\mathbf{2}$
13	$\mathbf{4}$	13	$\mathbf{3}$	13	$\mathbf{3}$
14	$\mathbf{3}$	14	$\mathbf{4}$	14	$\mathbf{2}$
15	$\mathbf{1}$	15	$\mathbf{2}$	15	$\mathbf{2}$
16	$\mathbf{1}$	16	$\mathbf{1}$	16	$\mathbf{1}$
17	$\mathbf{3}$	17	$\mathbf{4}$	17	$\mathbf{2}$
18	$\mathbf{1}$	18	$\mathbf{2}$	18	$\mathbf{3}$
19	$\mathbf{3}$	19	$\mathbf{3}$	19	$\mathbf{1}$
20	$\mathbf{1}$	20	$\mathbf{2}$	20	$\mathbf{1}$
21	$\mathbf{1}$	21	$\mathbf{3}$	21	$\mathbf{1}$
22	$\mathbf{4}$	22	$\mathbf{4}$	22	$\mathbf{1}$
23	$\mathbf{1}$	23	$\mathbf{1}$	23	$\mathbf{4}$
24	$\mathbf{3}$	24	$\mathbf{2}$	24	$\mathbf{3}$
25	$\mathbf{1}$	25	$\mathbf{3}$	25	$\mathbf{3}$
26	$\mathbf{2}$	26	$\mathbf{4}$	26	$\mathbf{1}$
27	$\mathbf{1}$	27	$\mathbf{2}$	27	$\mathbf{3}$
28	$\mathbf{2}$	28	$\mathbf{2}$	28	$\mathbf{4}$
29	$\mathbf{4}$	29	$\mathbf{3}$	29	$\mathbf{1}$
30	$\mathbf{2}$	30	$\mathbf{4}$	30	$\mathbf{3}$

SOLUTION

1. Ans. (3)

Sol. Starting from the point A, the manometetric equation may be written as

$$
\mathrm{P}_{\mathrm{A}}-(0.85)\left(10^{3}\right)(10)(0.4)=\mathrm{P}_{\mathrm{atm}}=10^{5}
$$

or $\quad \mathrm{P}_{\mathrm{A}}=\left(3.4 \times 10^{3}\right)+\left(100 \times 10^{3}\right)=103.4 \mathrm{kPa}$
Note : The variation of pressure in the gas is ingnored because the density of gas is negligible compared to that of the liquid.
2. Ans. (1)
3. Ans. (4)
4. Ans. (2)

Sol. Let $M=$ mass of boat, $m=$ mass of stones for floating condition

$$
\begin{align*}
& \text { weight = up thrust } \\
& (M+m) g=V_{D} \rho_{w} g \\
& V_{D}=\frac{M}{\rho_{w}}+\frac{m}{\rho_{w}} \tag{1}
\end{align*}
$$

When stones are unloaded into the water
$V_{D_{1}}=\frac{M}{\rho_{w}}\left(V_{D_{1}}=\right.$ displaced volume by boat $)$
$V_{D_{2}}=\frac{m}{\rho_{\mathrm{s}}}\left(\mathrm{V}_{\mathrm{D}_{2}}=\right.$ displaced volume by stones $)$
\therefore total displaced volume
$V_{D}^{\prime}=V_{D_{1}}+V_{D_{2}}=\frac{M}{\rho_{w}}+\frac{m}{\rho_{s}} \ldots(2)$
$\therefore \quad \frac{\mathrm{m}}{\rho_{\mathrm{w}}}>\frac{\mathrm{m}}{\rho_{\mathrm{s}}} \Rightarrow \mathrm{V}_{\mathrm{D}}>\mathrm{V}_{\mathrm{D}}^{\prime}$
So level will fall.
5. Ans. (2)

Sol. Energy $=\frac{1}{2} \epsilon_{0} E^{2}$ (volume)
$8.85 \times 10^{-6}=\frac{1}{2} \times 8.85 \times 10^{-12} \mathrm{E}^{2}\left(10^{-6}\right)$
$\mathrm{E}=\sqrt{2} \times 10^{6} \mathrm{~V} / \mathrm{m}$
flux $(\phi)=E A$
$=\sqrt{2} \times 10^{+6} \times 10^{-4}=100 \sqrt{2}(\mathrm{~V}-\mathrm{m})$
6. Ans. (3)

Sol. at $t=0$ 'L' behaves as open circuit and at $t=\infty$ as short circuit
7. Ans. (1)

Sol. $\quad V_{\text {eq }}=\sqrt{V_{0}^{2}+\left(\frac{V_{0}}{2}\right)^{2}}$

$$
\mathrm{R}_{\mathrm{eq}}=\sqrt{(\omega \mathrm{L})^{2}+\mathrm{R}^{2}}
$$

8. Ans. (3)

Sol. $\mathrm{I}=\frac{\mathrm{BV} \ell}{15}$
$\mathrm{I}_{1}=\mathrm{I}_{2}=\frac{\mathrm{I}}{2}$
9. Ans. (2)

Sol. $\quad \mathrm{q}=\frac{1}{\mathrm{R}} \mathrm{d} \phi=-\frac{1}{\mathrm{R}}\left(\phi_{2}-\phi_{1}\right)$

$$
\begin{aligned}
\phi_{1} & =\mathrm{NBA} \cos \theta \\
(\theta & =0) \\
\phi_{1} & =\mathrm{NBA} \\
\phi_{2} & =0\left[\because \theta=90^{\circ}\right] \\
\mathrm{q} & =\frac{\mathrm{NBA}}{\mathrm{R}}
\end{aligned}
$$

10. Ans. (2)

Sol. $\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{B}}$ as mass of water in A is more than in B

$$
\begin{array}{ll}
& \mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}} \\
& \text { Area of } \mathrm{A}=\text { Area of } \mathrm{B} \\
\text { or } & \mathrm{P}_{\mathrm{A}} \text { Area } \mathrm{A}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}} \text { Area } \mathrm{a}_{\mathrm{B}} \\
\text { or } & \mathrm{F}_{\mathrm{A}}=\mathrm{F}_{\mathrm{B}}
\end{array}
$$

11. Ans. (1)

Sol. At steady state, current in capacitor is zero, during charging current passing through capacitor.
12. Ans. (3)

Sol. For particle starts S.H.M. from extreme position

$$
\begin{aligned}
& y=A \cos \omega t \\
\Rightarrow \quad & \frac{\mathrm{~A}}{2}=\mathrm{A} \cos (\omega \times 1) \\
\Rightarrow \quad & \frac{1}{2}=\cos \omega \\
\Rightarrow \quad & \cos \frac{\pi}{3}=\cos \omega \\
\Rightarrow \quad & \cos \omega=\cos \frac{\pi}{3} \\
\Rightarrow \quad & \omega=\frac{\pi}{3} \\
\Rightarrow \quad & \mathrm{~T}=\frac{2 \pi}{\omega}=\frac{2 \pi \times 3}{\pi}=6 \mathrm{~s}
\end{aligned}
$$

13. Ans. (4)

Sol. Time for the echo $=10 \sqrt{5} \mathrm{~s}$ (i.e., for sound to travel $\mathrm{ABC})$. Velocity of the plane $=200 \mathrm{~m} / \mathrm{s}$.
$\mathrm{OC}=200 \times 5 \sqrt{5}=2236 \mathrm{~m}$
$B C=$ velocity of sound $\times 5 \sqrt{5}$
$\Rightarrow \mathrm{BC}=300 \times 5 \sqrt{5}=3354 \mathrm{~m}$
$\therefore \mathrm{OB}=\sqrt{\mathrm{BC}^{2}-\mathrm{OC}^{2}}$

$\mathrm{OB}=2500 \mathrm{~m}$
The plane is 2500 m above the ground.
14. Ans. (3)

Sol. Energy (E) $\infty\left(\right.$ Amplitude) ${ }^{2}$ (Frequency) ${ }^{2}$ Amplitude is same in both the case, but frequency 2ω in the second case is two times the frequency (ω) in the first case. Hence $\mathrm{E}_{2}=4 \mathrm{E}_{1}$.
15. Ans. (1)

Sol. Here, $\mathrm{E}=6 \mathrm{~V} / \mathrm{m}, \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$
$B=\frac{E}{C}=\frac{6 \mathrm{~V} / \mathrm{m}}{3 \times 10^{8 \mathrm{~ms}^{-1}}}=2 \times 10^{-8} \mathrm{~T}$
E is along the y -direction and the plane e.m. wave propagate along x -direction. Therefore, B should be in a direction perpendicular to both x and y-axis. Using vector algebra $\vec{E} \times \vec{B}$ should be along x-direction. Since $(+\hat{\mathrm{j}}) \times(+\hat{\mathrm{k}})=\hat{\mathrm{i}}, B$ is along the z -direction. Thus, magnetic field component B would be $2 \times 10^{-8} \mathrm{~T}$ along z-direction.
16. Ans. (1)
17. Ans. (3)

Sol. Output equation $y=\overline{\overline{\overline{\mathrm{A}}+\mathrm{B}}}=\overline{\mathrm{A} \cdot \mathrm{B}}$
18. Ans. (1)

Sol. Object is placed at centre of curvature.
Image after reflection from mirror will form on object itself.
Hence $\mathrm{O} \&$ image will form at same point after refraction from plane surface. so distance is zero
19. Ans. (3)
20. Ans. (1)

Sol. $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}_{\mathrm{eq}}}}$
$F_{\text {net }}=-(4 \mathrm{k})(4 \mathrm{x})=-16 \mathrm{kx}$
$\Rightarrow \mathrm{k}_{\text {eq }}=16 \mathrm{~K}$
21. Ans. (1)

Sol. $\quad \mathrm{v}_{\text {Particle }}=-($ slope $)\left(\mathrm{v}_{\text {wave }}\right)$

At A: slope $\rightarrow+\mathrm{ve}$ so v_{p} is -ve .

OR

At B: slope $\rightarrow-$ ve so v_{p} is +ve .
22. Ans. (4)

Sol. $\frac{\mathrm{mv}^{2}}{\mathrm{R}}=\mu \mathrm{mg} ; \mathrm{v}=\sqrt{\mu \mathrm{Rg}} \quad \therefore \mathrm{t}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}$
Horizontal distance $=\mathrm{vt}=\sqrt{2 \mu \mathrm{Rh}}$
23. Ans. (1)

Sol. The force exerted by ground on the block
$=\sqrt{\mathrm{N}^{2}+\mathrm{f}^{2}}$
$=\sqrt{(\mathrm{Mg})^{2}+\left[\left(\frac{4}{5}\right)(3 \mathrm{Mg})\right]^{2}}=\frac{13}{5} \mathrm{Mg}=2.6 \mathrm{Mg}$
24. Ans. (3)

Sol. From the figure net resistance
$\mathrm{R}_{1}=1$ ohm, $\mathrm{R}_{2}=\frac{1}{2}$ ohm, $\mathrm{R}_{3}=1$ ohm
It is clear that $\mathrm{R}_{3}=\mathrm{R}_{1}>\mathrm{R}_{2} \therefore \mathrm{P}_{2}>\mathrm{P}_{1}=\mathrm{P}_{3}\left[\mathrm{AsP}=\frac{\mathrm{V}^{2}}{\mathrm{R}}\right]$
25. Ans. (1)
26. Ans. (2)

Sol. T. E. in orbit - P E at surface

$$
\begin{aligned}
& =\frac{-\mathrm{GM}_{\mathrm{e}} \mathrm{~m}}{2(3 \mathrm{R})}-\left(\frac{-\mathrm{GM}_{\mathrm{e}} \mathrm{~m}}{\mathrm{R}}\right) \\
& =\mathrm{GM}_{\mathrm{e}} \mathrm{~m}\left(\frac{1}{\mathrm{R}}-\frac{1}{6 \mathrm{R}}\right)=\frac{5}{6} \frac{\mathrm{GM}_{\mathrm{e}} \mathrm{~m}}{\mathrm{R}}=\frac{5}{6} \mathrm{mgR}
\end{aligned}
$$

27. Ans. (1)

Sol. $\mathrm{R}_{1}=\frac{\ell}{\mathrm{kA}}=2 \mathrm{R}$
in configuration 1 ; equivalent $\mathrm{R}=3 \mathrm{R}$
in configuration 2 ; equivalent $R=\frac{2}{3} R$
$\Delta \mathrm{Q}_{1}=\frac{\Delta \mathrm{T}}{3 \mathrm{R}} \mathrm{t}_{1}$
; $\Delta Q_{2}=\frac{\Delta \mathrm{T}}{\frac{2 \mathrm{R}}{3}} \mathrm{t}_{2}$
$\Rightarrow \frac{\Delta \mathrm{T}}{3 \mathrm{R}} \mathrm{t}_{1}=\frac{3 \Delta \mathrm{~T}}{2 \mathrm{R}} \mathrm{t}_{2} \Rightarrow \mathrm{t}_{2}=\frac{2}{9} \mathrm{t}_{1}=2 \mathrm{sec}$.
28. Ans. (2)

Sol. $\mathrm{kE}=\frac{1}{2} \mathrm{mv}^{2}$
$\frac{\Delta \mathrm{kE}}{\mathrm{kE}}=\frac{\Delta \mathrm{m}}{\mathrm{m}}+2 \frac{\Delta \mathrm{v}}{\mathrm{v}}$
$\frac{\Delta \mathrm{kE}}{\mathrm{kE}} \times 100=2+2 \times 3$
$=8 \%$
29. Ans. (4)

Sol. $\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}$
$=\frac{f}{2} n R \Delta \mathrm{~T}+\mathrm{P} \Delta \mathrm{V}=\left(\frac{f}{2}+1\right) n R \Delta T$
$=\left(\frac{3}{2}+1\right)(2 \times 8.31)(5)=208 \mathrm{~J}$
30. Ans. (2)

Sol. $P_{1}+\frac{1}{2} \rho V_{1}^{2}=P_{2}+\frac{1}{2} \rho V_{2}^{2}$
$P_{1}-P_{2}=\frac{1}{2} \rho\left(V_{2}^{2}-v_{1}^{2}\right)$
$\mathrm{h} \times 13600 \times \mathrm{g}=\frac{1}{2} \times 1000\left(\mathrm{~V}_{2}^{2}-\mathrm{V}_{1}^{2}\right)$
$A_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}=\frac{\mathrm{d}(\text { volume })}{\mathrm{dt}}$
$\mathrm{V}_{1}=\frac{500}{5}=100 \mathrm{~cm} / \mathrm{s}=1 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{2}=\frac{500}{2}=250 \mathrm{~cm} / \mathrm{s}=2.5 \mathrm{~m} / \mathrm{s}$
$\mathrm{h}=\frac{\frac{1}{2} \times 1000(0.25-1)}{13600 \times 10} \mathrm{~m}$
$\mathrm{h}=\frac{1}{2} \times \frac{5.25 \times 100}{136} \mathrm{~cm}$
31. Ans. (2)

Sol. Only two geometrical isomers are possible of $\left[\mathrm{CoBrCl}(\mathrm{en})_{2}\right]^{+}$.

32. Ans. (3)

Sol. $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \xrightarrow{\Delta} 2 \mathrm{NaBO}_{2}+\mathrm{B}_{2} \mathrm{O}_{3}$
$\mathrm{CuO}+\mathrm{B}_{2} \mathrm{O}_{3} \xrightarrow{\Delta} \mathrm{Cu}\left(\mathrm{BO}_{2}\right)_{2}$
$2 \mathrm{Cu}\left(\mathrm{BO}_{2}\right)_{2}+4 \mathrm{NaBO}_{2}+2 \mathrm{C} \xrightarrow{\Delta} 2 \mathrm{Cu}$ (red and opaque) $+2 \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}+2 \mathrm{CO} \uparrow$
33. Ans. (1)

Sol.

nylon-6
34. Ans. (2)

Sol. 11.95 ppm means 11.95 g chloroform in $10^{6} \mathrm{~g}$ solution.
Hence $\mathrm{m}=\frac{11.95 \times 1000}{119.5 \times 10^{6}}=1 \times 10^{-4}$
35. Ans. (4)

Sol. 1140 torr $\times 10$ litre $=P_{\text {gas }} \times 15$
760 torr $=\mathrm{P}_{\text {gas }}$
final pressure of gas $=P_{\text {gas }}+P_{\text {aqueoustension }}$
$760+20=780$ torr.
36. Ans. (2)

Sol. $\quad W=\frac{E . i t}{F}$

$$
\left\{Z=\frac{E}{F}=0.0011180\right\}
$$

$\therefore \mathrm{W}=0.0011180 \times 0.5 \times 200$

$$
=0.11191 \mathrm{gram}
$$

37. Ans. (2)

Sol. $\mathrm{d}=\frac{\mathrm{Z} \times \mathrm{M}}{\mathrm{N}_{\mathrm{A}} \times \mathrm{a}^{3}}$
so, $Z=\frac{2.72 \times 6 \times 10^{23} \times\left(404 \times 10^{-10}\right)^{3}}{27}=4$
so, fcc.
38. Ans. (4)

Sol. (A) $\mathrm{Mg}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 s^{2} ; \mathrm{Al}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{1} \mathrm{As}$ electron is to be removed from stable completely filled s -orbital of Mg as compared to partially filled p-orbital of Al.
(B) Li^{+}due to small in size attracts more no. of water moleucules and thus have bigger hydrated ion.
(C) Addition of $2^{\text {nd }} e^{-}$to an anion (same charge) is difficult due to the electrostatic repulsion.
All statements are true.
39. Ans. (2)

Sol. Due to poor shielding effect of 'd' electrons.
40. Ans. (3)

Sol. B.O. of $\mathrm{O}_{2}{ }^{2-}=\frac{10-8}{2}=1$
B.O. of $\mathrm{B}_{2}=\frac{6-4}{2}=1$
41. Ans. (4)

Sol. MgO cannot be reduced by carbon at moderate temperature because ' Mg ' is highly electropositive metal and has very high lattice energy.
(A) $\mathrm{PbO}+\mathrm{C} \longrightarrow \mathrm{Pb}+\mathrm{CO}$
(B) $\mathrm{SnO}_{2}+2 \mathrm{C} \longrightarrow \mathrm{Sn}+2 \mathrm{CO}$
(C) $\mathrm{ZnO}+\mathrm{C} \longrightarrow \mathrm{Zn}+\mathrm{CO}$
42. Ans. (4)

Sol. $\mathrm{NH}_{4} \mathrm{Cl}$ gives $\mathrm{NH}_{3}, \mathrm{NH}_{4} \mathrm{NO}_{3}$ gives $\mathrm{N}_{2} \mathrm{O}$ and AgNO_{3} gives NO_{2}.
(A) $\mathrm{NH}_{4} \mathrm{Cl} \xrightarrow{\Delta} \mathrm{NH}_{3}+\mathrm{HCl}$
(B) $\mathrm{NH}_{4} \mathrm{NO}_{3} \xrightarrow{\Delta} \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{AgNO}_{3} \xrightarrow{\Delta} \mathrm{Ag}+\mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$
43. Ans. (3)

Sol. Both compounds give above product on oxidative ozonolysis.
44. Ans. (4)

Sol.

45. Ans. (2)

Sol.

46. Ans. (1)

Sol. enol of

47. Ans. (4)

Sol. $\quad t_{1 / 2} \propto C_{A O}^{1-n} \Rightarrow \frac{120}{30}=\left(\frac{0.1}{0.2}\right)^{1-n}$
or, $\frac{1}{4}=\left(\frac{1}{2}\right)^{\mathrm{n}-1} \Rightarrow \mathrm{n}-1=2 \Rightarrow \mathrm{n}=3$
48. Ans. (2)

Sol. $\Delta \mathrm{G}_{3}=\Delta \mathrm{G}_{1}+\Delta \mathrm{G}_{2}$
$-\mathrm{n}_{3} \mathrm{FE}_{3}=-\mathrm{n}_{1} \mathrm{FE}_{1}-\mathrm{n}_{2} \mathrm{FE}_{2}$
$\mathrm{E}_{3}=\frac{\mathrm{E}_{1} \mathrm{n}_{1}+\mathrm{E}_{2} \mathrm{n}_{2}}{\mathrm{n}_{3}}$
49. Ans. (3)

Sol. $\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}$
heat absorb (q) $=45$ joule
$\mathrm{w}=-70$ joule since
Work done by the system.
$\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}=45-70=-25$ joule
50. Ans. (2)

Sol. The total molarity of all the ions is maximum in $\mathrm{Na}_{3} \mathrm{PO}_{4}(0.1 \times 3=0.3 \mathrm{M})$. So it has the highest boiling point.
51. Ans. (3)

Sol. $\mathrm{Al}_{4} \mathrm{C}_{3}$ reacts with water to produce methane $\left(\mathrm{CH}_{4}\right)$.
$\mathrm{Al}_{4} \mathrm{C}_{3}+12 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{CH}_{4}$
Therefore, it may be called as methanide.
52. Ans. (4)

Sol. The sulphide ion, S^{2-}, reacts with sodium nitroprusside to give a dark red complex.
$\mathrm{S}^{2-}+\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right] \longrightarrow \underset{\text { dark red complex }}{\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]+2 e}$
53. Ans. (1)

Sol. Due to steric crowding on S atom, hydrolysis of SF_{6} doesn't occur.
54. Ans. (2)

Sol. 1° amine can give positive isocyanide test.
55. Ans. (3)

Sol.

56. Ans. (4)

Sol. $K_{P}=K_{C}(R T)^{\Delta n g} ; \Delta n g=0$
57. Ans. (2)

Sol. As $\mathrm{pH}=7.2$ so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\operatorname{antilog}(-7.2)$

$$
=6.3 \times 10^{-8} \mathrm{M}
$$

58. Ans. (2)

Sol. $\mathrm{k}=\frac{2.303}{15} \log \frac{0.36}{0.30}$
59. Ans. (3)

Sol. $\mathrm{K}_{2} \mathrm{SO}_{4}$ is a salt of a strong acid and strong base. So the electrolysis of $\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ is the electrolysis of water.
60. Ans. (4)

Sol. The coordination number of Na in NaCl and that of Cl in the same compound is six, which is same as that of the Ni ion in NiO .
61. Ans. (2)

Sol. Putting $c x=c^{2}+z$
$c \int_{1+c}^{a+c} f(c x) d x=\int_{c}^{a c} f\left(c^{2}+z\right) d z$.
so, the required value $=c \int_{1+c}^{a+c} d x=c(a-1)$.
62. Ans. (1)

Sol. $a \leq 4 \sin A \Rightarrow \frac{a}{\sin A} \leq 4 \Rightarrow R \leq 2$
so for any point (x, y) inside the circumcircle,
$x^{2}+y^{2}<4 \Rightarrow|x y|<2$.
63. Ans. (1)

Sol. If exactly four girls sit together and one boy sits with them then number of ways are
${ }^{2} \mathrm{C}_{1} \times 2 \times{ }^{5} \mathrm{C}_{4} \times 4!\times{ }^{9} \mathrm{C}_{1} \times{ }^{11} \mathrm{P}_{9}$.
If all the five girls sit together then
${ }^{5} \mathrm{C}_{5} \times 5!\times{ }^{2} \times{ }^{11} \mathrm{P}_{9}$.
If exactly four girls sit together and no boy sits with them then number of ways are

$$
{ }^{5} \mathrm{C}_{4} \times 4!\times 4 \times{ }^{11} \mathrm{P}_{10}
$$

Total ways $={ }^{11} \mathrm{P}_{9} .5![2+36+8]={ }^{11} \mathrm{P}_{9} \cdot 5!.46$
64. Ans. (3)

Sol. $0 \leq \operatorname{argz} \leq \frac{\pi}{4}$, represent the region of complex plane lying in the first quadrant and bounded by x-axis and the line $\mathrm{y}=\mathrm{x}$.
$|2 z-4 i|=2|z-2 i|$
least value of $|z-2 i|$ is length of perpendicular from $(0,2)$ to $y=x$, which is $\sqrt{2}$.

So the least value of $\sqrt{2}|2 z-4 i|$ is 4 .
65. Ans. (2)

Sol. Since $f(x)$ and $g(x)$ are one-one and onto and are also the mirror images of each other with respect to the line $y=2$. It clearly indicates that $\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$ will be a constant function and will always be equal to 4 .
66. Ans. (2)

Sol. Number of ways of selecting 3 consecutive numbers $(1,2,3 ; 2,3,4 ; 3,4,5 ; \ldots ; 8,9,10)=8$.
Number of ways of selecting 3 numbers so that no two of them are consecutive $={ }^{10-3+1} \mathrm{C}_{3}$
$={ }^{8} \mathrm{C}_{3}=56$
Desired probability $=\frac{8+56}{{ }^{10} \mathrm{C}_{3}}=\frac{8}{15}$.
67. Ans. (4)

Sol. We know the shortest and greatest distance between two curves always lie along the common normal. Let the normal to the $y=e^{x}$ at $\mathrm{Q}\left(\alpha, e^{\alpha}\right)$ meets the line $\mathrm{y}=\mathrm{x}$ at P .

$\frac{d y}{d x}=e^{x}$
$\therefore \quad-1=\left(-\frac{1}{\frac{d y}{d x}}\right)_{\mathrm{x}=\alpha} \Rightarrow-e^{-\alpha}=-1 \Rightarrow \alpha=0$
$\therefore \quad \mathrm{Q} \equiv(0,1)$
\therefore normal $=\mathrm{y}-1=-1(\mathrm{x}-0) \Rightarrow \mathrm{x}+\mathrm{y}-1=0$
$\therefore \quad \mathrm{P}=\left(\frac{1}{2}, \frac{1}{2}\right)$
$\therefore \quad \mathrm{PQ}=\sqrt{\frac{1}{4}+\frac{1}{4}} \Rightarrow \frac{1}{\sqrt{2}}$.
68. Ans. (3)

Sol. Required area $=2 \int_{0}^{1}\left(\sqrt{4-x^{2}}-\sqrt{3} x\right) d x$

$$
\begin{aligned}
& =2\left(\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{x}{2}\right)-\frac{\sqrt{3} \cdot 2 x^{1 / 2}}{3}\right)_{0}^{1} \\
& =\frac{2 \pi-\sqrt{3}}{3}
\end{aligned}
$$

69. Ans. (1)

Sol. Slope of normal at any point is $\frac{-1}{\left(\frac{d y}{d x}\right)}=\frac{1}{2 x}$
$\Rightarrow d y=-2 x d x$
$\Rightarrow y=-x^{2}+c$ and passes through $(4,3)$
$\Rightarrow x^{2}+y=19$.
70. Ans. (3)

Sol. Let the coordinate of foot of perpendicular be $D \equiv\left(x_{1}, y_{1}, z_{1}\right)$
Direction ratio of $C D$ are proportional to direction of $B C$.
$\Rightarrow \quad \mathrm{x}_{1}=2+2 k, \quad y_{1}=-3+8 k, \quad z_{1}=1-3 k$

$$
\begin{aligned}
& D A \perp B C \\
& k=1
\end{aligned}
$$

coordinates is $(4,5,-2)$
71. Ans. (3)

Sol. Let α be the common root of the given equation.
Then $\mathrm{a}^{2}+2 \mathrm{c} \alpha+\mathrm{b}=0$ and $\mathrm{a} \alpha^{2}+2 \mathrm{~b} \alpha+\mathrm{c}=0$
$\Rightarrow \quad 2 \alpha(\mathrm{c}-\mathrm{b})+(\mathrm{b}-\mathrm{c})=0$
$\Rightarrow \quad \alpha=\frac{1}{2} \quad[\because b \neq c]$
Putting $\alpha=\frac{1}{2}$ in $\mathrm{a}^{2}+2 \mathrm{c} \alpha+\mathrm{b}=0$, we get
$a+4 b+4 c=0$
72. Ans. (2)

Sol. $\quad \sin 10^{\circ}=\frac{\mathrm{a}}{2 \mathrm{~b}} \Rightarrow \sin 30^{\circ}=3 \sin 10^{\circ}-4 \sin ^{3} 10^{\circ}$
$\frac{1}{2}=\frac{3 a}{2 b}-\frac{4 a^{3}}{8 b^{3}}$
$1=\frac{3 a}{b}-\frac{a^{3}}{b^{3}}=a^{3}+b^{3}=3 a b^{2}$
73. Ans. (3)

Sol. $45^{\circ}=22^{\circ}+23^{\circ}$
Use $\cot \left(45^{\circ}\right)=\cot \left(22^{\circ}+23^{\circ}\right)=\frac{\cot 22^{\circ} \cot 23^{\circ}-1}{\cot 22^{\circ}+\cot 23^{\circ}}$

$$
\Rightarrow \cot 22^{\circ}+\cot 23^{\circ}=\cot 22^{\circ} \cot 23^{\circ}-1
$$

$\Rightarrow 1+\cot 22^{\circ}=\left(\cot 22^{\circ}-1\right) \cot 23^{\circ}$
$\Rightarrow \frac{1+\cot 22^{\circ}}{\left(\cot 22^{\circ}-1\right)}=\cot 23^{\circ}$
$\Rightarrow 1-\cot 23^{\circ}=1-\frac{1+\cot 22^{\circ}}{\left(\cot 22^{\circ}-1\right)}$
$=\frac{\cot 22^{\circ}-1-1-\cot 22^{\circ}}{\left(\cot 22^{\circ}-1\right)}$
74. Ans. (2)

Sol. If $f(x)$ is continuous at $x=0$ then
$f\left(0^{+}\right)=f\left(0^{-}\right)=f(0)=e^{\lim _{x \rightarrow 0} \frac{(x+1-1)}{x}}=e$
75. Ans. (2)

Sol. Coefficient of x^{6} in
$=1 \times{ }^{6} \mathrm{C}_{1}+1 \times{ }^{5} \mathrm{C}_{1}+1 \times{ }^{2} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1}+{ }^{2} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{1}+{ }^{3} \mathrm{C}_{2}$
$=28$
76. Ans. (1)

Sol. $f^{\prime}(x)=\frac{1}{2+x^{4}}$
By LMVT $f^{\prime}(c)=\frac{f(2)-f(1)}{2-1}$ for some $c \in(1,2)$
$\Rightarrow \mathrm{f}(2)=\frac{1}{2+\mathrm{c}^{4}}$
$\Rightarrow 1<\mathrm{c}<2$
$\Rightarrow 3<2+\mathrm{c}^{4}<18 \Rightarrow \mathrm{f}(2)<\frac{1}{3}$
77. Ans. (2)

Sol. $a \sin \mathrm{x}+2 \cos \left(\mathrm{x}+\frac{\pi}{3}\right)$
$=a \sin x+2\left[\cos x \cos \frac{\pi}{3}-\sin x \sin \frac{\pi}{3}\right]$
$=\operatorname{asin} x+2\left[\cos \frac{1}{2}-\sin x \frac{\sqrt{3}}{2}\right]$
$=(a-\sqrt{3}) \sin x+\cos x$
maximum value $\sqrt{(a-\sqrt{3})^{2}+1^{2}}=1$
$(a-\sqrt{3})^{2}+1=1 \Rightarrow a=\sqrt{3}$
Answer B.
78. Ans. (3)

Sol. $2 x+3 y-13=0$
$x-y+1=0$
$x=2, y=3$
\therefore equation $y-3=-\frac{2}{3}(x-2)$
$3 y-9=-2 x+4$
$2 x+3 y=13 \quad$ (C)
79. Ans. (1)

Sol. $\quad \bar{a} \cdot \bar{d}+\bar{b} \cdot \bar{d}+\bar{c} \cdot \bar{d}=(x+y+z)[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$
$\therefore \mathrm{x}+\mathrm{y}+\mathrm{z}=0$
80. Ans. (1)

Sol. $\frac{\mathrm{xx}_{1}}{24}-\frac{\mathrm{yy}}{18} 18$
Equation of tangent
$y=m x+\sqrt{a^{2} m^{2}-b^{2}}$
$y=\frac{-3}{2} x+\sqrt{36}$
$y=-\frac{3}{2} x+6$
From (i) and (ii)
$\mathrm{x}_{1}=-6, \mathrm{y}_{1}=3$
81. Ans. (1)

Sol. $2 y \frac{d y}{d x}=2 \lambda$
$\Rightarrow \lambda=\mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow y^{2}=2 y \frac{d y}{d x}\left(x+\left(y \frac{d y}{d x}\right)^{1 / 2}\right)$
$y^{2}-2 y x \frac{d y}{d x}=2\left(y \cdot \frac{d y}{d x}\right)^{3 / 2}$
Square both sides : $\left(y^{2}-2 x y \frac{d y}{d x}\right)^{2}=4\left(y \frac{d y}{d x}\right)^{3}$
82. Ans. (1)

Sol. $\Delta=\left|\begin{array}{ccc}2 & -1 & 2 \\ 1 & -2 & 1 \\ 1 & 1 & \lambda\end{array}\right|=0$
$\Rightarrow \lambda=1$
$\Delta_{z}=\left|\begin{array}{ccc}2 & -1 & 1 \\ 1 & -2 & -4 \\ 1 & 1 & 4\end{array}\right|=3 \neq 0$
83. Ans. (4)

Sol. S.D. $=\sqrt{\frac{\sum_{j=1}^{18}\left(x_{j}-8\right)^{2}}{n}-\left(\frac{\sum_{j=1}^{18}\left(x_{j}-8\right)}{n}\right)^{2}}$

$$
=\sqrt{\frac{45}{18}-\frac{1}{4}}=\frac{3}{2}
$$

84. Ans. (3)

Sol. $|\hat{\mathrm{u}}|=|\hat{\mathrm{V}}|=1$
and $\hat{u} . \hat{V}=0$
$\Rightarrow \hat{\mathrm{u}}$ and $\hat{\mathrm{V}}$ are at right angles.
$\Rightarrow \hat{\mathrm{u}} \times \hat{\mathrm{V}}=|\hat{\mathrm{u}}| \cdot|\hat{\mathrm{V}}| \sin \theta=1$
$\Rightarrow|\overrightarrow{\mathrm{r}} \times(\hat{\mathrm{u}} \times \hat{\mathrm{V}})|=$
$||\vec{r}|| \hat{u} \times \hat{V}|\sin \theta|=\left||\vec{r}| \cdot 1 \cdot \sin 90^{\circ}\right|=|\vec{r}|$
85. Ans. (3)

Sol. $f^{\prime}(\mathrm{x})=\frac{1-\ell \mathrm{n} \mathrm{x}}{\mathrm{x}^{2}}=0 \Rightarrow \mathrm{x}=e$
$\therefore a \in(1, e) \Rightarrow a=2$
by rolle's theorem $f(a)=f(b)$
$\Rightarrow \frac{\ln 2}{2}=\frac{\ln \mathrm{b}}{\mathrm{b}} \Rightarrow \mathrm{b}=4$
86. Ans. (1)

Sol. $\frac{1+2+6+x_{1}+x_{2}}{5}=4 \Rightarrow x_{1}+x_{2}=11$
$\frac{(1-4)^{2}+(2-4)^{2}+(6-4)^{2}+\left(x_{1}-4\right)^{2}+\left(x_{2}-4\right)^{2}}{5}=5.2$
$\Rightarrow\left(\mathrm{x}_{1}-4\right)^{2}+\left(\mathrm{x}_{2}-4\right)^{2}=9$
$\therefore \mathrm{x}_{1}=4$ and $\mathrm{x}_{2}=7$.
87. Ans. (3)

Sol. $(2,2) ;(3,3) \notin \mathrm{R}$
\Rightarrow not reflexive.
$(2,1) ;(1,2) \in \mathrm{R}$ and $(2,2) \notin \mathrm{R}$
\Rightarrow not transitive
$\mathrm{R}=\mathrm{R}^{-1}$
\Rightarrow symmetric
88. Ans. (4)

Sol. $p \Rightarrow(\sim p \vee q)$ is false means p is true and $\sim p v q$ is false
$\Rightarrow p$ is true and false $\sim p$ and q are false
$\Rightarrow p$ is true and q is false.
89. Ans. (1)

Sol. $A^{2}=\left[\begin{array}{ll}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 2\left(\frac{1}{2}\right) & 1\end{array}\right]$
$\mathrm{A}^{3}=\mathrm{A}^{2} \cdot \mathrm{~A}=\left[\begin{array}{ll}1 & 0 \\ 2\left(\frac{1}{2}\right) & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 3\left(\frac{1}{2}\right) & 0\end{array}\right]$
$\mathrm{A}^{100}=\left[\begin{array}{ll}1 & 0 \\ 50 & 1\end{array}\right]$
90. Ans. (3)

Sol. $\quad s_{n}=1+1 / 2+1 / 2^{2}+$ $+1 / 2^{n-1}$
$s_{n}=\frac{1\left(1-(1 / 2)^{n}\right)}{(1-1 / 2)}=2\left[1-\frac{1}{2^{n}}\right]$
$2-\mathrm{s}_{\mathrm{n}}<\frac{1}{100}$
$\frac{2}{2^{n}}<\frac{1}{100}$
$\mathrm{n} \geq 8$

