HINTS \& SOLUTIONS

PAPER-1

PART-I (Physics)

1. Two masses m_{1} and m_{2}.

Sol. (A)

2. In the system shown, the

Sol. (C) $4 \mathrm{a}=4 \mathrm{~g}-\mathrm{T}$

$$
\begin{aligned}
& 4 \mathrm{a}=\mathrm{T} \\
& \mathrm{~T}=20 \mathrm{~N} \\
& \mathrm{a}=5
\end{aligned}
$$

$$
50=\frac{n}{2 \times 0.6} \sqrt{\frac{20}{\frac{1}{20}}} \Rightarrow n=3
$$

$$
0.2=\frac{1}{2} 5 t^{2} \quad \Rightarrow \quad t=\sqrt{0.08}
$$

$$
\begin{gathered}
t_{1}=0 \quad t_{2}=\sqrt{0.08} \quad t_{3}=\sqrt{0.16} \\
\Delta t_{1}=\sqrt{0.08}
\end{gathered} \quad \Delta t_{2}=\sqrt{0.16}-\sqrt{0.08}
$$

$$
\frac{\Delta t_{1}}{\Delta t_{2}}=\frac{1}{\sqrt{2}-1}
$$

3. For two thermodynamic process

Sol. (B)
First process is constant pressure
Hence, $\mathrm{W}_{1}=\mathrm{nR}\left(2 \mathrm{~T}_{0}-\mathrm{T}_{0}\right)=n R T_{0}$
Equation of second process is $T=\frac{C}{V}$
Hence, $\mathrm{P}=\frac{\mathrm{nRT}}{\mathrm{V}}=\frac{\mathrm{nRc}}{\mathrm{V}^{2}}$

$\therefore \quad W_{2}=\int_{V_{0}}^{2 V_{0}} P d V=\frac{n R T_{0}}{2}$
$\frac{W_{1}}{W_{2}}=2: 1$
4. A block of mass m is

Sol. (B)
Force exerted by block along Incline plane
$F=m a=m \omega^{2} x=m \omega^{2} A \sin \omega t$
Horizontal component of this force, so

$$
f=F \cos 60^{\circ} \quad \Rightarrow \quad f=\frac{1}{2} m \omega^{2} A \sin \omega t
$$

5. Ultraviolet light of wavelength \qquad

Sol. (C)

$$
\mathrm{E}_{1}=\frac{\mathrm{hC}}{\lambda_{1}}-13.6 \mathrm{eV} \quad ; \quad \mathrm{E}_{2}=\frac{\mathrm{hC}}{\lambda_{2}}-13.6 \mathrm{eV}
$$

$$
\mathrm{E}_{1}-\mathrm{E}_{2}=\mathrm{hC}\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right) ; \mathrm{E}_{1}-\mathrm{E}_{2}=\mathrm{hC}\left(\frac{\lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}\right)
$$

$\mathrm{h}=\frac{\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right) \lambda_{1} \lambda_{2}}{\mathrm{c}\left(\lambda_{2}-\lambda_{1}\right)}$
6. The ratio of total acceleration.

Sol. (B) $\mathrm{a}=\frac{\mathrm{V}^{2}}{\mathrm{r}}$

$$
\mathrm{a} \propto \frac{\mathrm{Z}^{2}}{1 / \mathrm{Z}} \quad \text { or } \mathrm{a} \propto \mathrm{Z}^{3} \Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\left(\frac{2}{1}\right)^{3}=8
$$

7. In the circuit shown in the.

Sol. (D) $\mathrm{By} \mathrm{Q}=\mathrm{CV}$
Effective capacitance across combination of C_{3} and C_{4} is 7 C .
8. S_{1} : When an electron in a hydrogen. \qquad
Sol. (A) $S_{2}: \frac{V_{2}}{V_{1}}=\frac{m_{1}}{m_{2}}=\left(\frac{r_{1}}{r_{2}}\right)^{3}$
S_{3} : Initially when sphere is rolling up, friction force is directed upwards along the inclined. If suddenly friction becomes zero only gravitational force will act on the sphere.
9. $\quad S_{1}$: A man is standing on a.

Sol. (B) \mathbf{S}_{1} : On the whole system there is an external resultant force applied by fixed vertical axis, so centre of mass of the whole system will move with respect to ground.
\mathbf{S}_{2} : Due to induced electric field
\mathbf{S}_{3} : If the angular momentum of a system is constant in magnitude then the torque (if any) acting on the system must be perpendicular to the angular momentum.
10. S_{1} : The COM of a rod is. \qquad

Ans. (C)

11. Find the velocity of centre

Sol. (D) $\mathrm{Ndt}=\frac{3}{5} \mathrm{mV}_{0}$
$\mathrm{mV} \mathrm{CM}=\mathrm{J} \cos 37^{\circ}+\mu \mathrm{Ndt}$
$m V_{C M}=\frac{4}{5} m V_{0}+\frac{1}{3} \cdot \frac{3}{5} m V_{0}$

$V_{C M}=V_{0}$
12. Find the angular velocity

Sol. (A)
$\mathrm{I} \omega=\mathrm{mV}_{0} \mathrm{R}-\mu \mathrm{NdtR}$
$\frac{2}{5} m R^{2} \omega=m V_{0} R-\frac{1}{3} \cdot \frac{3}{5} m V_{0} R \quad \Rightarrow \quad \omega=\frac{2 V_{0}}{R}$
13. The emf induced \qquad
Ans
(B)
14. The reading of

Ans. (C)
Sol.(13 to 14)
$\phi=\pi \mathrm{a}^{2} \mathrm{~B}_{0} \mathrm{t}$
$\varepsilon=-\frac{\mathrm{d} \phi}{\mathrm{dt}}$

$\Rightarrow \varepsilon=\pi \mathrm{a}^{2} \mathrm{~B}_{0} \quad$ (induced emf $)$
$i=\frac{\pi \mathrm{a}^{2} \mathrm{~B}_{0}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad$ (induced current)
$\Delta \mathrm{V}_{1}=-\int_{\mathrm{a}}^{\mathrm{b}} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{d} \ell}=-\left(-\mathrm{i} \mathrm{R}_{1}\right)=\frac{\pi \mathrm{a}^{2} \mathrm{~B}_{0} \mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$
$\Delta \mathrm{V}_{2}=-\int_{\mathrm{a}}^{\mathrm{b}} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{d} \ell}=-\left(\mathrm{i} \mathrm{R}_{2}\right)=-\frac{\pi \mathrm{a}^{2} \mathrm{~B}_{0} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$
15. A train is moving with a constant.

Ans. 15
Sol. $f^{\prime}=f\left(\frac{V-V_{O}}{V-V_{S}}\right)$
$=\left(\frac{\mathrm{V}+15 \cos 45}{\mathrm{~V}+15 \cos 45}\right) \mathrm{f}$
$\mathrm{f}^{\prime}=\mathrm{f}=1.5 \mathrm{kHz}=3 / 2 \mathrm{kHz}$

16. Figure shows the variation of. \qquad
Ans. 14
Sol. For rectangular hyperbola
XY = constant
$\cup \rho=$ constant
$n C_{V} \top \rho=$ constant
$\mathrm{n} \frac{5}{2} \mathrm{R} \mathrm{T} \frac{\mathrm{M}}{\mathrm{V}}=\mathrm{constant}$
$\frac{5}{2} \mathrm{P} \frac{\mathrm{VM}}{\mathrm{V}}=\mathrm{constant} \Rightarrow \mathrm{P}=$ constant (isobaric process)
$\Delta \mathrm{U}_{\mathrm{B} \rightarrow \mathrm{A}}=37-2=35 \mathrm{~J}=\frac{5}{2} n R \Delta \mathrm{~T}$
$14 \mathrm{~J}=n R \Delta T \quad \therefore \quad W=14 \mathrm{~J}$
17. In Young's Double slit experiment. \qquad

Ans. 15

Sol. $(\mu-1) t=n \lambda$
n - number of fringes shifted
$(1.5-1) 15 \lambda=n \lambda$
$\mathrm{n}=7.5$
Total number of fringes shifted $=15$.
18. Initial charges (with proper sign)

Ans. 40

Sol. Let final potential difference be V
Total charge on left hand side plates (of both upper \& lower capacitor)

$$
=1 \mathrm{~V}+1 \mathrm{~V}=2 \mathrm{~V}
$$

from the conservation of charge

$$
\begin{aligned}
2 \mathrm{~V} & =2+6 \\
\mathrm{~V} & =4 \text { volt }
\end{aligned}
$$

19. To reduce the light reflected \qquad
Ans. 30
Sol. $2 \mu \mathrm{~d}=(2 \mathrm{n}-1) \frac{\lambda}{2} \quad(\mathrm{n}=1,2,3, \ldots \ldots)$
$\Rightarrow \mathrm{d}=\frac{(2 \mathrm{n}-1) \lambda}{4 \mu}$
For light of wavelength
$\lambda_{1}=700 \mathrm{~nm}$

$$
d_{1}=\frac{700}{4 \mu}, \frac{2100}{4 \mu}, \frac{3500}{4 \mu}
$$

for light of wavelength $\lambda_{2}=420 \mathrm{~nm}$

$$
\begin{gathered}
\mathrm{d}_{2}=\frac{420}{4 \mu}, \frac{1260}{4 \mu}, \frac{2100}{4 \mu} \Rightarrow \mathrm{~d}_{\min }=\frac{2100}{4 \mu}=\frac{2100}{4 \times \frac{7}{4}} \\
\mathrm{~d}_{\min }=300 \mathrm{~nm}=3 \times 10^{-7} \mathrm{~m}=30 \times 10^{-8} \mathrm{~m}
\end{gathered}
$$

20. Consider a huge charge reservoir

Ans. 60
Sol. After a large no. of time, the potential of each capacitor will be equal to the potential of the reservior
$\Rightarrow Q_{2}=C_{2} V \quad \Rightarrow \quad Q_{2}=60 \mu C$
21. A long straight wire is carrying current Ans. 00
Sol. The force on current elements
1 and 2 is equal in magnitude and opposite in direction

$\Rightarrow \mathrm{F}_{\mathrm{net}}=0$

PART-II (Chemistry)

22. In which case van't Hoff factor is

Ans. (C)
Sol. $\begin{array}{lll}\text { Solute } & \mathbf{y} & \mathbf{x} \\ \text { (A) } \mathrm{KCl} & \mathbf{i}=\left[\begin{array}{c}1+(\mathbf{y}-\mathbf{1}) \mathbf{x}] \\ 2\end{array}\right. & 0.5\end{array}$
$\begin{array}{llll}\text { (B) } \mathrm{K}_{2} \mathrm{SO}_{4} & 3 & 0.4 & 1.8 \\ \text { (C) } \mathrm{FeCl}_{3} & 4 & 0.3 & 1.9\end{array}$
$\begin{array}{llll}\text { (C) } \mathrm{FeCl}_{3} & 4 & 0.3 & 1.9 \\ \text { (D) } \mathrm{SnCl}_{4} & 5 & 0.2 & 1.8\end{array}$
23. Following is the graphical presentation of \qquad
Ans. (D)
Sol. From the graph

$$
\begin{aligned}
& \mathrm{mCH}_{4}=4 \mathrm{~g} \Rightarrow \frac{4}{16} \mathrm{~mol} \Rightarrow \frac{4}{16} \times 22.4 \mathrm{Ltr} . \Rightarrow 5.6 \mathrm{Ltr} . \\
& \mathrm{mH}_{2}=1 \mathrm{~g} \Rightarrow \frac{1}{2} \mathrm{~mol} \Rightarrow \frac{1}{2} \times 22.4 \mathrm{Ltr} . \Rightarrow 11.2 \mathrm{Ltr}
\end{aligned}
$$

24. Which of the following statements is true \qquad
Ans. (C)
Sol. (A) $\stackrel{N}{N}=\stackrel{+}{N}=\bar{N}$ Four membered ring is not stable.
(B) Both $\mathrm{N}-\mathrm{N}$ bond lengths are identical and that is $1.15 \AA$
(C) $\mathrm{N}_{3}{ }^{-}$and CO_{2} both have same number of electrons i.e. 22 ; so isoelectronic.

$$
\overline{\mathrm{N}}=\underset{\mathrm{sp}}{+\stackrel{+}{\mathrm{N}}}=\overline{\mathrm{N}}(\text { linear }) \quad \mathrm{O}=\underset{\mathrm{sp}}{\mathrm{C}}=\mathrm{O} \text { (linear) }
$$

So both are also isostructural
(D) There are two σ and two π bonds.

25. Which of the following is not correctly matched \qquad ..?
Ans. (A)
Sol. $\mathrm{Na}_{2}[\mathrm{Cr}$ (edta)] is correct representation.
26. In which of the following option, second compound \qquad
Ans. (C)
27.

Ans. (D)
 Identify E \qquad
Ans. (B)
29. S_{1} : All adiabatic processes are isoentropic \qquad
S_{2} : When $\left(\Delta G_{\text {system }}\right)_{T, P}<0$; the reaction \qquad
Ans. (B)
Sol. Only reversible adiabatic are isoentropic.
Endothermic reaction may be spontaneous if ΔS is positive.
30. S_{1} : Addition of inert gas to the equilibrium \qquad
S_{2} : Equilibrium $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is \qquad
\mathbf{S}_{3} : Formation of diamond is favourable at very \qquad
Ans. (B)
31. S_{1} : Secondary-butyl magnesium bromide \qquad
\qquad

Ans. (D)
32. The bottles (A), (B) and (C) contain the solutions \qquad
Ans. (A)
Sol. (A) Weak acid and strong base mixture is froming buffer of pH = 4.7 .
(B) Strong acid and strong base mixture can from neutral salt.
(C) Strong acid and weak acid mixture will from acidic solution.

So ' A ', ' B ' and ' C ' must be weak acid, strong base and strong acid respectively.
33. What will be degree of ionisation when \qquad
Ans. (C)
Sol. $\mathrm{pH}=\mathrm{PK}_{\mathrm{a}}+\log \frac{\text { [salt }]}{[\text { acid }]}$
$4.7=\mathrm{PK}_{\mathrm{a}}+\log \frac{50 \times 0.1}{100 \times 0.1}$
$\mathrm{PK}_{\mathrm{a}}=5 \quad \mathrm{k}_{\mathrm{a}}=10^{-5}$
$\mathrm{HA}+\mathrm{BOH} \underset{\sim}{\rightleftharpoons} \mathrm{BA}+\mathrm{H}_{2} \mathrm{O}$
$150^{\prime} 0.1500^{\prime} 0.1$
100×0.1
weak acid
Bottle $(A)=$ Weak acid Bottle
$(B)=$ Strong base
Bottle (C) = Strong acid
34. The reductive ozonolysis products of (Z) are

Ans. (D)
35. What is not true about (Y). \qquad
Ans.
(B)

Sol. (34 to 35)

36. The percentage of copper in a copper(II) \qquad
Ans. 51
Sol. From given reactions
mmoles of hypo $=$ mmoles of iodine $\times 2$

$$
\begin{aligned}
& =\text { mmoles of } \mathrm{Cu}^{2+} \text { ions } \\
& =24.5 \times 0.1 \text { mmoles }
\end{aligned}
$$

so mass of copper $=24.5 \times 0.1 \times 10^{-3} \times 63.5 \mathrm{gm}$
so $\%$ of copper $=\frac{24.5 \times 0.1 \times 10^{-3} \times 63.5}{0.305} \times 100 \% \simeq 51.0 \%$
37. If for the equilibrium \qquad
Ans. 21
Sol. $\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$

$$
p \quad 3 p \quad p \quad \frac{p}{2}
$$

Total pressure at equilibrium = 22 atm
$p+3 p+p+\frac{p}{2}=22 \Rightarrow \frac{11}{2}=22 \Rightarrow p=4 \mathrm{~atm}$
$K p=p(3 p)^{3} p \sqrt{\frac{p}{2}}=27 \times p^{11 / 2} \quad 2^{-1 / 2}$
$\Rightarrow 27 \times 2^{\lambda / 2}=27(4)^{11 / 2} 2^{-1 / 2} \quad \Rightarrow 2^{\lambda / 2}=2^{21 / 2}$
$\lambda=21$
38. 30 litre gas at 400 K and \qquad
Ans. 10 litre
Sol. $Z_{1}=\frac{P_{1} V_{1}}{R T_{1}}$ and $Z_{2}=\frac{P_{2} V_{2}}{R T_{2}}$
$\frac{Z_{1}}{Z_{2}}=\frac{P_{1}}{P_{2}} \times \frac{T_{2}}{T_{1}} \times \frac{V_{1}}{V_{2}} \quad \Rightarrow V_{2}=10$ litre
39. For a given reaction, energy of activation for forward \qquad
Ans. 02
Sol. $\Delta H=E_{f}-E_{b} \quad-40=80-E_{b} \quad E_{b}=120 \mathrm{~kJ} / \mathrm{mole}$,
catalyst lower the E_{f} To $20 \mathrm{~kJ} /$ mole for forward $R x n$ then $E_{f}^{\prime}=$ $20 \mathrm{~kJ} / \mathrm{mol}$
we know catalyst decreases the Activation energy equal amount in both direction
$E_{b}{ }^{\prime}=(120-60)=60 \mathrm{kj} / \mathrm{mol}$
$\frac{E_{b}}{E_{b}^{\prime}}=\frac{120}{60}=2.0$
40. Total number of β-Keto monocarboxylic acids \qquad
Ans. 06
Sol.

41. ' M ' is smallest optically active branched alkane. \qquad
Ans. 13

Sol. $\mathrm{CH}_{2}=\mathrm{CH} \underset{\substack{\mathrm{C} \\(\pm)}}{\substack{\mathrm{CH}_{3} \\ \pm}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

(1)

42.

Ans. 06

Sol. X can be

Total 9 alkenes are formed and after fractional distilation 6 are separated.

PART-III(Mathematics)

43. Consider the sequence

Sol. (A)Since $45^{2}=2025$ and $46^{2}=2116$, there are precisely 45 perfect squares ≤ 2056 which are left out from the sequence of positive integers. Since 2056-45 = 2011, we conclude that the $2011^{\text {th }}$ element is 2056.
44. Suppose that x and y are real numbers

Sol. (B) Note that

$$
\frac{5}{3}=4^{x}-4^{y}=\left(2^{x}-2^{y}\right)\left(2^{x}+2^{y}\right)=1 .\left(2^{x}+2^{y}\right)
$$

Therefore, $\quad 2^{x}=\frac{\left(2^{x}+2^{y}\right)+\left(2^{x}-2^{y}\right)}{2}=\frac{\frac{5}{3}+1}{2}=\frac{4}{3}$
and $\quad 2^{y}=\frac{\left(2^{x}+2^{y}\right)-\left(2^{x}-2^{y}\right)}{2}=\frac{\frac{5}{3}-1}{2}=\frac{1}{3}$,
which implies $2^{x-y}=\frac{2^{x}}{2^{y}}=\frac{4 / 3}{1 / 3}=4$
and thus $x-y=2$.
45. An ordinary die is rolled \qquad
Sol. (D) Among the number 1, ..., 6 on the faces of the die, there are three odd numbers, three even numbers, three prime numbers (2, 3, and 5), five factors of 12 (all except 5), and four factors of 18 (all except 4 and 5). Therefore the number rolled is most likely to be a factor of 12 (with probability $\frac{5}{6}$).
46. The largest prime factor

Sol. (D) $7^{99}+7^{100}+7^{101}=7^{99}\left(1+7+7^{2}\right)=7^{99} \times 57=7^{99} \times 3 \times 19$. The largest prime factor is 19.
47. The solution of the equation \qquad
Sol. (B) $2 x+y=t \Rightarrow \frac{d y}{d x}+2=\frac{d t}{d x}$
$\frac{d t}{d x}+x t=x^{3} t^{3} \Rightarrow \frac{1}{t^{3}} \frac{d t}{d x}+\frac{1}{t^{2}} x=x^{3}$
$\frac{1}{t^{2}}=u \Rightarrow \frac{-2}{t^{3}} \frac{d t}{d x}=\frac{d u}{d x}$
$\frac{d u}{d x}+(-2 x) u=-2 x^{3}$
I.F. $=e^{-\int 2 x d x}=e^{-x^{2}} \Rightarrow$ u. $e^{-x^{2}}=\int e^{-x^{2}}\left(-2 x^{3}\right) d x$
$\frac{e^{-x^{2}}}{(2 x+y)^{2}}=-2 \int e^{-x^{2}} \cdot x^{3} d x$
$\frac{e^{-x^{2}}}{(2 x+y)^{2}}=\int e^{-x^{2}} \cdot x^{2}(-2 x) d x \Rightarrow-x^{2}=v$
$-2 x d x=d v \Rightarrow \frac{e^{-x^{2}}}{(2 x+y)^{2}}=-\int e^{v} v d v$
$\frac{e^{-x^{2}}}{(2 x+y)^{2}}+v \cdot e^{v}-e^{v}=C \Rightarrow \frac{e^{-x^{2}}}{(2 x+y)^{2}}-x^{2} e^{-x^{2}}-e^{-x^{2}}=C$
$\frac{1}{(2 x+y)^{2}}=\left(x^{2}+1\right)+C e^{x^{2}}$
48. If $f:[-1,5] \rightarrow[-10,2]$ \qquad
Sol. (B) Range of $g(x)=[-1,5]$
$(g(x))^{2}+2 g(x)+3=(g(x)+1)^{2}+2$
Range of $(g(x))^{2}+2 g(x)+3=[2,38]$
Range of $\left.\log _{\frac{1}{2}}(g(x))^{2}+2 g(x)+5\right)$ is
$\left[\log _{\frac{1}{2}} 38, \log _{\frac{1}{2}} 2\right]=\left[\log _{\frac{1}{2}} 38,-1\right]$
Ans. (B)
49. If $\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-\ldots \ldots.\right)$

Sol. (B) $\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4} \ldots \ldots ..\right)+\cos ^{-1}$

$$
\begin{aligned}
& \left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4}+\ldots\right)=\frac{\pi}{2} \\
& \sin ^{-1}\left(\frac{x}{1+(x / 2)}\right)+\cos ^{-1}\left(\frac{x^{2}}{1+\left(x^{2} / 2\right)}\right)=\frac{\pi}{2} \\
& \frac{2 x}{2+x}=\frac{2 x^{2}}{2+x^{2}} \\
& 2 x+x^{3}=2 x^{2}+x^{3} \\
& x=0,1 \\
& \text { Bo } x=1 \text { is the only answer. } \therefore|x|>0
\end{aligned}
$$

50. S_{1} : It is possible that for a \qquad
Sol. (D)
51. S_{1} : A straight line can

Sol. (B) \mathbf{S}_{1} : A straight line always have two set of direction cosines.
$\mathbf{S}_{2}: f(x)$ is even and increasing in $[0,1]$ so range of $f(x)$ is $\left[0, \frac{\pi}{2} \sin 1\right]$
S_{3} :
52. S_{1} : Equation of director circle

Sol. (B) S_{1} :
S_{2} : Let $g(x)=f(x)-x$
$g(a)=f(a)-a \geq 0$
$g(b)=f(b)-b \leq 0$

$\Rightarrow \quad g(a) g(b) \leq 0 \quad$ (By IVP theorem)
$\Rightarrow g(c)=0$ for some $c \in[a, b]$
$\Rightarrow f(c)-c=0 \Rightarrow f(c)=c$
S_{3} : The graph of $f(x)=\sin x$ is concave downwards for $x \in$ $(0, \pi)$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\sin A+\sin B+\sin C}{3} \leq \sin \left(\frac{A+B+C}{3}\right) \\
& \Rightarrow \quad \sin A+\sin B+\sin C \leq \frac{3 \sqrt{3}}{2}
\end{aligned}
$$

53. The number of ways in which ' 4 ' pairs \qquad
Sol. (B) Since $n=4$
$\therefore \quad$ Number of matched arrangements $=\frac{8!}{4!5!}=\frac{{ }^{8} C_{4}}{5}$
54. If a stamp vendor sells tickets \qquad
Sol. (A) $n=3$
$\therefore \quad$ Number of matched arrangements $=\frac{6!}{3!4!}$
Total number of arrangements $=\frac{6!}{3!3!}$
\therefore probability $=\frac{1}{4}$
55. If $2 m \ell+\ell^{2}-3 m^{2}+1=0$

Sol. (D) Substituting $\ell=\frac{1-m y}{x}$ in the given condition, we get $\left(y^{2}-3 x^{2}-2 x y\right) m^{2}+2(x-y) m+x^{2}+1=0$ $D=0 \quad \Rightarrow 3 x^{2}+2 x y-y^{2}+4=0$ which is a hyperbola.
56. The locus of the points from which

Sol. (C) Equation of the pair of the tangents to the curve $3 x^{2}+2 x y-y^{2}+4=0$ is
$\left(3 x_{1} x+x y_{1}+x_{1} y-y_{1} y+4\right)^{2}=\left(3 x_{1}^{2}+2 x_{1} y_{1}-y_{1}^{2}+4\right)$
$\left(3 x^{2}+2 x y-y^{2}+4\right)$
Since the two tangents are perpendicular to each other,
$\therefore \quad \mathrm{x}_{1}{ }^{2}+\mathrm{y}_{1}{ }^{2}=2 \quad \therefore \quad$ the locus is $\mathrm{x}^{2}+\mathrm{y}^{2}=2$
57. Consider a family of circles passing

Sol. (25) Family of circles is $(x-3)(x-6)+(y-7)(y-5)+\lambda$ $(2 x+3 y-27)=0$
i.e. $x^{2}+y^{2}+x(2 \lambda-9)+y(3 \lambda-12)+(53-27 \lambda)=0$.

Common chord of family of circles and the given circle is
$(-5 x-6 y+56)+\lambda(2 x+3 y-27)=0$
which represents family of line passing through point of intersection of the lines
$-5 x-6 y+56=0$ and $2 x+3 y-27=0$
The point of intersection is $\left(2, \frac{23}{3}\right)$

$$
\begin{aligned}
& b=\frac{23}{3} \\
& a+3 b=2+23=25
\end{aligned}
$$

58. If eccentricity of ellipse \qquad
Sol. (4) case $\mathrm{I} a>0$, then $e=\sqrt{\frac{4 \mathrm{a}}{\mathrm{a}^{2}+4 \mathrm{a}}}<\frac{1}{\sqrt{2}} \Rightarrow a>4$ case II $\mathrm{a}<0$, then $\mathrm{e}=\sqrt{\frac{-4 \mathrm{a}}{\mathrm{a}^{2}}}=\sqrt{\frac{-4}{\mathrm{a}}}<\frac{1}{\sqrt{2}} \Rightarrow a<-8$ $\therefore a \in(-\infty,-8) \cup(4, \infty) \quad \therefore|\lambda+\mu|=4$
59. In a town of 10,000 families

Sol. (14)

Probability of families to buy newspaper B only $=\frac{14}{100}$
60. If $C_{n} C_{n-2}+C_{n-1} C_{n-3}+C_{n-2} C_{n-4}+\ldots \ldots \ldots \ldots \ldots . .$.

Sol. (2) $\mathrm{C}_{0} \mathrm{C}_{2}+\mathrm{C}_{1} \mathrm{C}_{3}+\mathrm{C}_{2} \mathrm{C}_{4}+\ldots \ldots \ldots+\mathrm{C}_{n-2} \mathrm{C}_{n}={ }^{2 n} \mathrm{C}_{\mathrm{n}}+2$
$(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+{ }^{n} C_{3} x^{3}+\ldots \ldots+{ }^{n} C_{n} x^{n}$
$(x+1)^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1}+{ }^{n} C_{2} x^{n-2}+\ldots \ldots+{ }^{n} C_{n}$
multiplying equation (1) \& (2)
$(1+x)^{2 n}=\left({ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots .+{ }^{n} C_{n} x^{n}\right)\left({ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1}+\right.$
$\left.{ }^{n} C_{2} x^{n-2}+\ldots \ldots .+{ }^{n} C_{n}\right)$
Now required expression is coefficient of x^{n-2} in $(1+x)^{2 n}$
$={ }^{2 n} C_{n-2}={ }^{2 n} C_{n+2}$
61. If $f(x)=\frac{a \sin x-b x+c x^{2}+x^{3}}{2 x^{2} \ln (1+x)-2 x^{3}+x^{4}}$

Sol. (15) $\lim _{x \rightarrow 0} \frac{a\left(x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\ldots \ldots\right)-b x+c x^{2}+x^{3}}{2 x^{2}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \ldots \ldots \ldots\right)-2 x^{3}+x^{4}}$
$=\lim _{x \rightarrow 0} \frac{(a-b) x+c x^{2}+\left(1-\frac{a}{6}\right) x^{3}+\frac{a x^{5}}{120}+\ldots \ldots}{\frac{2 x^{5}}{3}-\frac{x^{6}}{2}+\ldots \ldots}$
for this limit to be exist, $a-b=0, c=0, \& 1-\frac{a}{6}=0$
$\Rightarrow \quad a=b=6 \& \quad c=0$.
then $f(0)=\frac{6}{120} \cdot \frac{3}{2}=\frac{3}{40} \Rightarrow 200 f(0)=15$
62. If $\int \frac{d x}{\sqrt{x}+\sqrt[3]{x}}$ \qquad
Sol. (37) Let $x=u^{6}, d x=6 u^{5} d u$

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{x}+\sqrt[3]{x}}=\int \frac{6 u^{5} d u}{u^{3}+u^{2}}=6 \int \frac{u^{3}}{u+1} d u \\
& =6 \int\left(u^{2}-u+1-\frac{1}{u+1}\right) d u \\
& =2 u^{3}-3 u^{2}+6 u-6 \ln (u+1)+C \\
& =2 \sqrt{x}-3(\sqrt[3]{x})+6(\sqrt[6]{x})-6 \ln (\sqrt[6]{x}+1)+C \\
& \therefore \quad a=2, b=-3, c=6, d=-6 \quad \therefore \quad 20 a+b+c+d=37
\end{aligned}
$$

63. If equation of the plane through

Sol. (14) Let equation of a plane containing the line be $\ell(x-1)+m(y$ $+2)+n z=0$
then $2 \ell-3 m+5 n=0$ and $\ell-m+n=0$
$\therefore \quad \frac{\ell}{2}=\frac{\mathrm{m}}{3}=\frac{\mathrm{n}}{1}$
$\therefore \quad$ the plane is $2(x-1)+3(y+2)+z=0$
i.e. $2 x+3 y+z+4=0 \quad \therefore \quad a=2, b=-3, c=1$
$\therefore \quad a^{2}+b^{2}+c=14$

PAPER-2

PART-I (Physics)

1. A particle is executing simple.

Sol. (D) $\frac{1}{2} K A^{2}=\frac{1}{2} m v^{2}+\frac{1}{2} K x^{2}$ and $\frac{1}{2} K x^{2}+\frac{1}{2} m(2 V)^{2}=\frac{1}{2} K A^{\prime 2}$

$$
A^{\prime}=\sqrt{4 A^{2}-3 X^{2}}
$$

2. Two particles are moving towards.

Sol. (C) As $\vec{V}_{c m}=0 \quad \therefore \quad \vec{V}_{1}=-\vec{u}_{1}$ and $\vec{V}_{2}=-\vec{U}_{2}$
3. A particle of mass m oscillates. \qquad
Sol. (C) $m g R \sin \theta=\frac{1}{2} m v^{2}$
$2 m g \sin \theta=\frac{m v^{2}}{R}$
$m g R \sin \theta=K$
$m g \sin \theta=\frac{K}{R}$
$N=\frac{m v^{2}}{R}+m g \sin \theta$

mg
$N=2 m g \sin \theta+m g \sin \theta$
$N=3 \mathrm{mg} \sin \theta$
$N=\frac{3 K}{R}$
4. Which of the following graph is

Ans. (A)
5. The work done by gas

Sol. (C) $\mathrm{W}=$ Area $=9 \mathrm{P}_{0} \mathrm{~V}_{0}$.
6. The following figure shows.

Sol. (C) Let the focal length of each piece be f
Then $\frac{1}{f_{1}}=\frac{1}{f}+\frac{1}{f} \Rightarrow \frac{1}{f_{2}}=\frac{1}{f}+\frac{1}{f} \quad \Rightarrow f_{1}=f_{2}$
For the third arrangerment the liquid forms a concave lens which has a diverging effect. So $f_{3}>f_{1}=f_{2}$
7. An equilateral triangular loop

Sol. (C) If ℓ is the side of the triangle, the distance of circumcenter from each of the sides of the triangle is $r=\frac{\ell \sqrt{3}}{6}$. $\quad T h \quad e$ magnetic induction due to each of the sides of the triangle carrying a current i is $\frac{\mu_{0}}{4 \pi} \frac{i}{r}\left(\sin 60^{\circ}+\sin 60^{\circ}\right)=\frac{\mu_{0}}{4 \pi} \frac{6 i}{\ell}$. Since the direction of magnetic field in each case is the same, three times this would be the total magnetic induction.
8. Two radioactive materials

Sol. (B) Using the law of radioactive decay, one can write

$$
\frac{N_{A}(t)}{N_{B}(t)}=\frac{N_{0} \exp (-5 \lambda t)}{N_{0} \exp (-\lambda t)}=\frac{1}{e} .
$$

Solving this one gets the results.
9. In a situation, a board is moving

Sol. (A, C, D)
Velocity of A w.r.t plank $=\mathrm{V}$
Velocity of B w.r.t plank $=3 \mathrm{~V}$

$$
T=\frac{L}{V+3 V}=\frac{L}{4 V}
$$

Their relative displacements w.r.t plank are $\frac{3 \mathrm{~L}}{4} \& \frac{\mathrm{~L}}{4}$
10. A particle of mass m is

Sol. (B,D)
$\mathrm{U}(\mathrm{x})=\mathrm{U}_{0}(1-\cos \mathrm{a} \mathrm{x})$
$\frac{d U}{d x}=U_{0} a \sin a x$
$F=-\frac{d U}{d x}$

$$
; \quad F=-U_{0} a \sin a x
$$

For small $x \quad F=-U_{0} a^{2} x$

$$
\text { acceleration }=-\frac{\mathrm{U}_{0} \mathrm{a}^{2}}{\mathrm{~m}} \mathrm{x} \quad ; \quad \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{U}_{0} \mathrm{a}^{2}}}
$$

At $x=0, F=0$ hence mean position and speed of particle is maximum.
11. A circular disc of radius R \qquad
Sol. (A, B, C, D)

12. A wire shaped as a semicircle

Sol. (B,C,D) Let at time the angle between magnetic field and area vector(semicircle) be θ, then $\theta=\mathrm{wt}$
$\phi=\overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{S}}=\frac{\pi \mathrm{a}^{2} \mathrm{~B}}{2} \cos \omega \mathrm{t}$.
$\varepsilon=-\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{\pi \mathrm{Ba}^{2} \omega}{2} \sin \omega t \Rightarrow \varepsilon_{0}=\frac{\pi \mathrm{Ba}^{2}}{2 \sqrt{\mathrm{LC}}}$ peak emf emf
Since the circuit is in resoanance,
$|z|=R \quad \Rightarrow i_{0}=\frac{\pi \mathrm{Ba}^{2}}{2 \mathrm{R} \sqrt{\mathrm{LC}}}$ peak current
$i_{\mathrm{rms}}=\frac{\mathrm{i}_{0}}{\sqrt{2}} \Rightarrow \mathrm{i}_{\mathrm{rms}}=\frac{\pi \mathrm{Ba}^{2}}{2 \mathrm{R} \sqrt{2 \mathrm{LC}}}$
$\mathrm{V}_{\mathrm{C}}=\frac{1}{2} \mathrm{CV}_{0}^{2} \rightarrow$ max. energy, $\mathrm{V}_{0} \rightarrow$ peak voltage
$V_{0}=i_{0} X_{c}=\frac{i_{0}}{C \omega}=\frac{i_{0} \sqrt{L C}}{C}$
$V_{C}=\frac{1}{2} C \times \frac{\pi^{2} B^{2} a^{4}}{4 R^{2} C^{2}}=\frac{\pi^{2} B^{2} a^{4}}{8 R^{2} C}$

$$
\begin{aligned}
& \mathrm{P}_{\text {Ext. }}=\mathrm{P}_{\text {Dissipated }}=\varepsilon_{0} \mathrm{i}_{0}=\frac{\pi \mathrm{Ba}^{2}}{2 \sqrt{\mathrm{LC}}} \times \frac{\pi \mathrm{Ba}^{2}}{2 \mathrm{R} \sqrt{\mathrm{LC}}} \\
& \mathrm{P}_{\mathrm{Ext.}}=\frac{\pi^{2} \mathrm{~B}^{2} \mathrm{a}^{4}}{4 \mathrm{LCR}}
\end{aligned}
$$

13. Two refracting media are separated

Sol. (A,C) Use

$$
\frac{\mu_{2}}{\mathrm{v}}-\frac{\mu_{1}}{\mathrm{u}}=\frac{\mu_{2}-\mu_{1}}{\mathrm{R}}
$$

14. Two isotropic blocks A and B.

Sol. (\mathbf{A}, \mathbf{B}) Because in both the situation liquid displaced is equal to the weight of blocks
15. Choose the correct statements

Sol. (C,D) (A) $r+e=1$ these means if r is large (good reflector) then e will be small (bad emitter)
(D) efficiency is equal to $1-t_{1} / t_{2}$ (t_{1} cannot be zero so, efficiency can not be 100\%)
16. A particle of mass m and charge. \qquad
Sol. (B,C) Work done by tension $=0$
Work done by Electric field $=\mathrm{qE} \times \ell\left(1-\cos 60^{\circ}\right)$
(B) $\frac{\mathrm{qE} \ell}{2}=\frac{1}{2} \mathrm{mV}^{2} \Rightarrow \mathrm{~V}=\sqrt{\frac{\mathrm{qE} \ell}{\mathrm{m}}}$
(C) $\mathrm{T}-\mathrm{qE}=\frac{\mathrm{mV}^{2}}{\ell} \Rightarrow \mathrm{~T}=2 \mathrm{qE}$
17. STATEMENT-1 : The current density $\overrightarrow{\mathrm{J}}$

Sol. (C) From relation $\overrightarrow{\mathrm{J}}=\sigma \overrightarrow{\mathrm{E}}$, the current density $\overrightarrow{\mathrm{J}}$ at any point in ohmic resistor is in direction of electric field \vec{E} at that point. In space having non-uniform electric field, charges released from rest may not move along ELOF. Hence statement 1 is true while statement 2 is false.
18. STATEMENT-1 : Two particles undergo

Sol. (D) In statement-1, nothing is said about acceleration of both particles. Hence angle between velocity and acceleration of centre of mass may not be zero. Consequently centre of mass may not move along a straight line. Hence statement- 1 is false.
19. STATEMENT-1: Work done by a force.

Sol. (C) Work done depends on displacement of point of application of force and not on displacement of centre of mass. Hence statement-2 is false.
20. An object is kept infront of. \qquad
Ans. 7
21. A ring of radius r made

Ans. 2
Sol. 2T $\sin \frac{\Delta \theta}{2}=d m \omega^{2} r$ $2 T\left(\frac{\Delta \theta}{2}\right)=\rho \times A \times r \Delta \theta \times \omega^{2} \times r$

$\sigma=\frac{T}{\mathrm{~A}}=\rho \mathrm{r}^{2} \omega^{2}$
$\therefore \omega=\sqrt{\frac{\sigma}{\rho}}=2 \mathrm{rad} / \mathrm{s}$
22. Two opposite forces $F_{1}=120 \mathrm{~N}$. \qquad
Ans. 1
Sol. $\mathrm{dL}=\frac{T}{A} \frac{d x}{y}$

$T=F_{1}-\left(F_{1}-F_{2}\right) \frac{X}{L}$
$\int_{0}^{\Delta L} \mathrm{dl}=\frac{\left(F_{1}+F_{2}\right) L}{2 A y}=1 \times 10^{-9} \mathrm{~m}$
23. The difference between $(n+2)^{\text {th }}$

Ans. 8
Sol. $r_{n} \alpha n^{2} \quad ; \quad r_{n+2}=k(n+2)^{2}$
$\mathrm{r}_{\mathrm{n}}=\mathrm{kn}^{2} \quad ; \quad \mathrm{r}_{\mathrm{n}-2}=\mathrm{k}(\mathrm{n}-2)^{2}$
$(\mathrm{n}+2)^{2}-\mathrm{n}^{2}=(\mathrm{n}-2)^{2} \Rightarrow \mathrm{n}=8$
24. In the arrangement shown, the pendulum.

Ans. 1

PART-II (Chemistry)

25. In a gaseous mixture, if an alkane $\left(\mathrm{C}_{x} \mathrm{H}_{2 x+2}\right)$.

Ans. (B)
Sol. $M_{\text {mix. }}=\frac{2 \cdot(14 x+2)+1 .(14 y)}{3}=20$

$$
\begin{equation*}
28 x+14 y=56 \tag{1}
\end{equation*}
$$

$M_{\text {mix. }}=\frac{1 .(14 x+2)+2 \cdot(14 y)}{3}=24$
$14 x+28 y=70$
$\Rightarrow x=1, y=2$
26. A 1000 gm sample of water is reacted with \qquad
Ans. (B)
Sol. Total heat released $=65.2 \times 10^{3} \times \frac{1000}{18}$

$$
\begin{aligned}
& \text { Mass of } \mathrm{Ca}(\mathrm{OH})_{2} \text { produced }=\frac{1000}{18} \times 74 \mathrm{gm} \\
& \frac{1000}{18} \times 74 \times 1.2\left(\mathrm{~T}_{\mathrm{f}}-25\right)=\frac{1000}{18} \times 65.2 \times 10^{3}
\end{aligned}
$$

27. Select the INCORRECT statement :
(A) $\mathrm{N}_{2} \mathrm{O}$ with sodium metal in liquid ammonia forms

Ans. (B)
Sol. $3 \mathrm{~N}_{2} \mathrm{O}+4 \mathrm{Na}+\mathrm{NH}_{3} \xrightarrow{\mathrm{NH}_{3}(\ell)} \mathrm{NaN}_{3}+3 \mathrm{NaOH}+2 \mathrm{~N}_{2}$

$$
\underbrace{2 \mathrm{NH}_{3}+\mathrm{NaOCl}}_{\text {dilute solutions }} \xrightarrow{\text { glue }} \mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta} \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cr}_{2} \mathrm{O}_{3} \downarrow$ (green)
$\mathrm{CaCN}_{2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CaCO}_{3} \downarrow+2 \mathrm{NH}_{3}$
$\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ (deep blue)
28. Usually a disilicate share only one oxygen of silicate \qquad
Ans. (B)

Sol.

29. An aqueous solution contains $\mathrm{Al}^{3+} \& \mathrm{Zn}^{2+}$ both.

Ans. (A)

Sol. In excess of $\mathrm{NH}_{4} \mathrm{OH}$ ppt of $\mathrm{Zn}(\mathrm{OH})_{2}$ will get dissolved.
30. Diethenylpentadiene is:

Ans. (C)
31. The reaction that gives the following molecule \qquad

Ans. (B)
32. $\mathrm{CCl}_{3}-\mathrm{CH}=\mathrm{O}$ reacts with chlorobenzene in

Ans. (C)
33. The 'brown ring' formed at the junction

Ans. (ABC)
Sol. IF

Number of unpaired electrons $=3$; So, $\mu=\sqrt{3(2+3)}=3.87$ B.M.
34. Make out the right combination of cell and condition \qquad
Ans. (ABD)
Sol. For spontaneity, $\quad E_{\text {cell }}>0$

$$
\mathrm{E}_{\text {cell }}^{0}=0 \text { for concentration cell. }
$$

(A) Anode : $\quad \mathrm{H}_{2} \longrightarrow \mathrm{Zn}^{+}+2 \mathrm{e}^{-}$

Cathode: $\quad \mathrm{Zn}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}$

$$
\begin{aligned}
& \mathrm{H}_{2} \text { / anode } \longrightarrow \mathrm{H}_{2} \text { / cathode } \\
& \mathrm{E}_{\text {cell }}=-\frac{0.0591}{2} \log \frac{\mathrm{H}_{2} / \text { cathode }}{\mathrm{H}_{2} / \text { anode }}=-\frac{0.0591}{2} \log \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}} \\
&=+\mathrm{ve}
\end{aligned}
$$

(B) Anode: $\quad \mathrm{Zn}(\mathrm{s}) \longrightarrow \mathrm{Zn}^{2+}+\mathrm{Ce}^{-}$

Cathode : $\quad \mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}(\mathrm{s})$

$$
\mathrm{Zn}^{2+} / \text { cathode } \longrightarrow \mathrm{Zn}^{2+} / \text { anode }
$$

$$
\mathrm{E}_{\text {cell }}=-\frac{0.0591}{2} \log \frac{\mathrm{Zn}^{2+} / \text { anode }}{\mathrm{Zn}^{2+} / \text { cathode }}=-\frac{0.0591}{2} \log \frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}=+ \text { ve }
$$

35. Which of the following statements is/are true for \qquad
Ans. (AB)
Sol. $\mathrm{M}=\frac{(\% \mathrm{w} / \mathrm{w}) \times \mathrm{d} \times 10}{\text { Mol. } \mathrm{mass}_{\text {solute }}}=\frac{8 \times 1.125 \times 10}{60}=1.5 \mathrm{M}$
$(\% \mathrm{w} / \mathrm{v})=(\% \mathrm{w} / \mathrm{w} /) \times \mathrm{d}=8 \times 1.125=9 \%$
Molality $=\frac{1000 \times \mathrm{M}}{1000 \times \mathrm{d}-\mathrm{M} \times \text { Mol. mass } \text { solute }}$

$$
=\frac{1000 \times 1.5}{1000 \times 1.125-1.5 \times 60}(>1.5 \mathrm{~m})
$$

Since, volume of solution is not given, so number of moles of solute cannot be calculated.
36. An energy of 40.8 eV is required to excite a Hydrogen-like species
Ans. (ACD)
Sol. $\mathrm{E}_{2}-\mathrm{E}_{1}=\Delta \mathrm{E}$
$40.8=13.6 Z^{2}\left(\frac{1}{1}-\frac{1}{4}\right)=13.6 \times \frac{3}{4} Z^{2}$
$Z^{2}=4 \Rightarrow Z=2$
$I E=13.6 Z^{2}=13.6 \times 2^{2}=54.4 \mathrm{ev}$
$K E_{1}=13.6 Z^{2}=13.6 \times 2^{2}=54.4 \mathrm{ev}$
$E_{2}=-\frac{13.6 \times 2^{2}}{2^{2}}=-13.6 \mathrm{ev}$
37. Which of the following statement(s) is are correct when a mixture of NaCl .
Ans. (ABD)
Sol. Chromyl chloride confirmatory test for ionic chlorides which forms $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ (deepred)
38. Choose the correct options \qquad ...:
Ans. (ABCD)
39. Out of the following which reactions give polar \qquad
Ans. (ACD)
40. Choose the correct options \qquad :
(A) Compound $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right) \mathrm{NH}_{2}$ react with KOH and CHCl_{3} produces bad smell.
Ans. (ABD)
41. Statement-1: For a polytropic process \qquad
Ans.
(D)
42. Statement - $1: \mathrm{PbCl}_{2}$ and AgCl precipitates can be \qquad ..

Ans. (B)

Sol. Statement-1: AgCl $+2 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$ (soluble complex)
$\mathrm{Pb}^{2+}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Pb}(\mathrm{OH})_{2} \downarrow$ (white) $+2 \mathrm{NH}_{4}^{+}$
Statement - $2: \mathrm{PbCl}_{2} \downarrow+2 \mathrm{Cl}^{-} \longrightarrow\left[\mathrm{PbCl}_{4}\right]^{2-}$ [soluble complex]
43. Statement - 1

(I)

(II)

Compound II is more reactive towards \qquad
Ans. (A)
44. Calculate the osmotic pressure (in atm) of a solution \qquad
Ans. 6
Sol. $\mathrm{p}=\left(\mathrm{i}_{1} \mathrm{C}_{1}+\mathrm{i}_{2} \mathrm{C}_{2}+\mathrm{i}_{3} \mathrm{C}_{3}\right) R T$

$$
\begin{aligned}
& =(2 \times 0.065+3 \times 0.02+1.2 \times 0.05) \times 0.08 \times 300 \\
& =(0.13+0.06+0.06) \times 0.08 \times 300=6 \mathrm{~atm} .
\end{aligned}
$$

45. In how many of the following species the central \qquad
Ans. 5

Sol. XeF_{4}

ClOF_{3}

ICl_{4}^{-}

OSF_{4}

46. How many oxides are soluble in moderately

Ans. 7
Sol. $\mathrm{SO}_{3}, \quad \mathrm{Cl}_{2} \mathrm{O}_{7}, \quad \mathrm{~N}_{2} \mathrm{O}_{5}, \quad \mathrm{GeO}_{2} \quad$ Acidic
$\mathrm{Cr}_{2} \mathrm{O}_{3}$ Amphoteric
$\mathrm{K}_{2} \mathrm{O}, \quad \mathrm{BaO}$ Basic
CO , Neutral
Reactions:
$\mathrm{SO}_{3}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Cl}_{2} \mathrm{O}_{7}+2 \mathrm{NaOH} \longrightarrow 2 \mathrm{NaClO}_{4}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{N}_{2} \mathrm{O}_{5}+2 \mathrm{NaOH} \longrightarrow 2 \mathrm{NaClO}_{4}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CO}+\mathrm{NaOH} \longrightarrow$ No reaction
$\mathrm{K}_{2} \mathrm{O}+\mathrm{NaOH} \longrightarrow$ No reaction but $\mathrm{K}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{KOH}$
$\mathrm{BaO}+\mathrm{NaOH} \longrightarrow$ No reaction but $\mathrm{BaO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ba}(\mathrm{OH})_{2}$
$\mathrm{Cr}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{Na}\left[\mathrm{Cr}(\mathrm{OH})_{4}\right]$
$\mathrm{GeO}_{2}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{GeO}_{3}+\mathrm{H}_{2} \mathrm{O}$
47. Observe the following substituted pyridines

Ans. 2
48. Observe the following reaction and \qquad
Ans. 4

PART-III (Mathematics)

49. A circle of radius 1 and a square

Sol. (A)
50. The largest positive root \qquad
Sol. (B)
$x^{2}+\frac{1}{x^{2}}+2\left(x+\frac{1}{x}\right)-22=0 \Rightarrow\left(x+\frac{1}{x}\right)^{2}+2\left(x+\frac{1}{x}\right)-24=0$
where we have complete the square. Now put $t=x+x^{-1}$, then $t^{2}+2 t-24=(t-4)(t+6)=0$ which implies $t=4$ or $t=-6$. Putting $4=x+x^{-1}$ leads to $x^{2}-4 x+1=0$ as above, and putting $-6=x$ $+x^{-1}$ leads to $x^{2}+6 x+1=0$.
51. Let $A B C D$ be a rectangle and E \qquad
Sol. (C) Coordinate geometry leads to the correct result as well. Take $A=(0,0), B=(a, 0), C=(a, b)$ and $D=(0, b)$. Then, the coordinates of E are found to be $\left(\frac{2 a b^{2}}{a^{2}+b^{2}}, \frac{2 a^{2} b}{a^{2}+b^{2}}\right)$. Then condition $E B=E C$ yields the equation $\frac{2 a^{2} b}{a^{2}+b^{2}}=\frac{b}{2}$, which can be reduced to $3 a^{2}=b^{2}$ or $\frac{b}{a}=\sqrt{3}$.
52. Shortest distance between \qquad
Sol. (A) Equation of normal to $y^{2}=x^{3}$ at any point $\left(t^{2}, t^{3}\right)$ is $y-t^{3}=\frac{-2}{3 t}$ $\left(x-t^{2}\right)$ will passes through $\left(0, \frac{15}{9}\right)$ i.e., centre of the circle $\frac{5}{3}$ $-t^{3}=-\frac{2}{3 t}\left(-t^{2}\right)$
$3 t^{3}+2 t-5=0$
$\Rightarrow \quad t=1$
\Rightarrow point corresponding to shortest distance $(1,1)$
shortest distance $=$ distance from $(1,1)$ to centre of circle radius
$=\sqrt{1+\frac{4}{9}}-1=\frac{\sqrt{13}}{3}-1$
Ans. (A)
53. The value of

$$
\int_{-\pi / 2}^{\pi / 2} e^{-|\tan x|}(\cos (\tan x)+\sin (\tan x)) \sec ^{2} x d x
$$

Sol. (A) $I=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} e^{-|\tan x|}(\cos \tan x) \sec ^{2} x d x$

$$
+\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} e^{-|\tan x|} \sin (\tan x) \sec ^{2} x d x
$$

$I=2 \int_{0}^{\frac{\pi}{2}} e^{-\tan x}(\cos \tan x) \sec ^{2} x d x+0$
$\tan \mathrm{x}=\mathrm{t}$
$\sec ^{2} x d x=d t$
$I=2 \int_{0}^{\infty} e^{-t} \cos t d t$
$\left.I=2 \frac{e^{-t}(-\cos t+\sin t}{2}\right]_{0}^{\infty}=0-(1(-1+0))=1$
$\mathrm{I}=1$
Ans. A
54. Let $\mathrm{L}_{1}: \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}-2}{1}=\frac{z-3}{1}$

Sol. (C) point on the $L_{1}(2 \lambda+1, \lambda+2, \lambda+3)$
point on the $L_{2}(\mu,-\mu, 3 \mu+5)$
$2 \lambda+1=\mu$
$\lambda+2=-\mu=-2 \lambda-1$
$3 \lambda=-3$
$\lambda=-1, \mu=-1$
$d r^{\prime}$ of perpendicular to the L_{1} and $L_{2}\left|\begin{array}{ccc}\hat{i} & \hat{j} & k \\ 2 & 1 & 1 \\ 1 & -1 & 3\end{array}\right|$ $=4 \hat{i}-5 \hat{j}-3 \hat{k}$
equation of line $\vec{r}=(-\hat{i}+\hat{j}+2 \hat{k})+\lambda(4 \hat{i}-5 \hat{j}-3 \hat{k})$
55. Area bounded by the curve

Sol. (D)

Area $=2 \int_{0}^{\pi / 2}\left(x-x^{2}+\pi x\right) d x$
$=2\left[\frac{x^{2}}{2}+\frac{\pi x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{\pi / 2}$
$=2\left[\frac{(1+\pi)}{2} \cdot\left(\frac{\pi^{2}}{4}\right)-\frac{\pi^{3}}{24}\right]=\frac{\pi^{2}}{4}(1+\pi)-\frac{\pi^{3}}{12}$
$=\frac{\pi^{2}}{4}+\frac{\pi^{3}}{4}-\frac{\pi^{3}}{12}=\frac{\pi^{2}}{4}+\frac{2 \pi^{3}}{12}=\frac{\pi^{2}}{4}+\frac{\pi^{3}}{6}$
56. Let $\mathrm{f}(\mathrm{x})=\int_{3}^{\mathrm{x}} \frac{\mathrm{dt}}{\sqrt{\mathrm{t}^{4}+3 \mathrm{t}^{2}+13}}$

Sol. (B) $\frac{d y}{d x}=\frac{1}{\sqrt{x^{4}+3 x^{2}+13}}$ when $y=f(x)$
$\therefore g^{\prime}(y)=\frac{1}{d y / d x}=\sqrt{x^{4}+3 x^{2}+13}$
when $y=0$ then $x=3$
hence $g^{\prime}(0)=\sqrt{3^{4}+27+13}=\sqrt{121}=11$ Ans.
57. If the line $a x+b y+c=0$ \qquad
Sol. (BC) $x y=1 \Rightarrow y=\frac{1}{x} \Rightarrow \frac{d y}{d x}=-\frac{1}{x^{2}}$
\therefore slope of normal $=x^{2}=-\frac{a}{b}>0 \Rightarrow \frac{a}{b}<0$
\Rightarrow either $\mathrm{a}<0, \mathrm{~b}>0$ or $\mathrm{a}>0, \mathrm{~b}<0$.
58. Let the minimum value . \qquad
Sol. (BC) $a x^{2}-b x+\frac{1}{2 a}=a\left(x^{2}-\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}\right)+\frac{1}{2 a}-\frac{b^{2}}{4 a}=a$
$\left(x-\frac{b}{2 a}\right)^{2}+\frac{2-b^{2}}{4 a}$
$\therefore \quad \mathrm{k}=\frac{\mathrm{b}}{2 \mathrm{a}} \quad$ and $\mathrm{y}_{0}=\frac{2-\mathrm{b}^{2}}{4 \mathrm{a}}$
thus $\frac{b}{2 a}=2 . \frac{2-b^{2}}{4 a}$ i.e $b^{2}+b-2=0$ i.e $b=-2,1$
59. Consider two lines $\frac{x+3}{-4}=\frac{y-6}{3}=\frac{z}{2}$

Sol. (BCD) lines $L_{1}=\frac{x+3}{-4}=\frac{y-6}{3}=\frac{z}{2}$ and
$L_{2}=\frac{x-2}{-4}=\frac{y+1}{1}=\frac{z-6}{1}$
Let shortest distance $=\mathrm{d}$
$d=\left|\frac{\left(\vec{a}_{1}-\vec{a}_{2}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|$
$\vec{a}_{1}=-3 \hat{i}+6 \hat{j} \quad ; \quad \vec{a}_{2}=2 \hat{i}-\hat{j}+6 \hat{k}$
$\overrightarrow{\mathrm{b}}_{1}=-4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}} \quad ; \quad \overrightarrow{\mathrm{b}}_{2}=-4 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$
$d=\frac{|(-5 \hat{i}+7 \hat{j}-6 \hat{k}) \cdot(\hat{i}-4 \hat{j}+8 \hat{k})|}{|\hat{i}-4 \hat{j}+8 \hat{k}|}=9$
60. If $3 A=\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 1 & -2 \\ x & -2 & y\end{array}\right]^{\top}$

Sol. (ABD) $3 A \cdot 3 A^{\top}=\left[\begin{array}{ccc}-1 & 2 & x \\ -2 & 1 & -2 \\ -2 & -2 & y\end{array}\right]\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 1 & -2 \\ x & -2 & y\end{array}\right]$
$\therefore\left[\begin{array}{ccc}1+4+x^{2} & 2+2-2 x & 2-4+x y \\ 2+2-2 x & 4+1+4 & 4-2-2 y \\ 2-4+x y & 4-2-2 y & 4+4+y^{2} \\ 5+x^{2}=9, & 4-2 x=0, & 4-2-2 y\end{array}\right]=\left[\begin{array}{ccc}9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9\end{array}\right]$
i.e. $x=2, y=1$
61. If $z_{1}=5+12 i \&\left|z_{2}\right|$

Sol. (AD) $z_{1}=5+12 i,\left|z_{2}\right|=4$

$$
\begin{aligned}
& \left|z_{1}+i z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|=13+4=17 \\
& \therefore \quad\left|z_{1}+(1+i) z_{2}\right| \geq\left|\left|z_{1}\right|-|1+i|\right| z_{2}| | \\
& \\
& =13-4 \sqrt{2} \\
& \therefore \quad \min \left(\left|z_{1}+(1+i) z_{2}\right|\right)=13-4 \sqrt{2} \\
& \\
& \left|z_{2}+\frac{4}{z_{2}}\right| \leq\left|z_{2}\right|+\frac{4}{\left|z_{2}\right|}=4+1=5 \\
& \\
& \therefore \quad \max \left|\frac{z_{2}+\frac{4}{z_{2}}\left|\geq\left|z_{2}\right|-\frac{4}{\left|z_{2}\right|}=4-1=3\right.}{z_{2}+\frac{4}{z_{2}}}\right|=\frac{13}{3} \text { and min }\left|\frac{z_{1}}{z_{2}+\frac{4}{z_{2}}}\right|=\frac{13}{5}
\end{aligned}
$$

62. If $f(x)$ is a differentiable function \qquad
Sol. (BCD) $\frac{f(3)-f(1)}{3-1}=f^{\prime}(c)$, for some c such that $1<c<3$
$f^{\prime}(c)=\frac{f(3)-2}{2} \geq 2$
$\therefore \quad f(3) \geq 6$
63. Let S denote the set

Sol. (ABC) The given system of linear equations will have a nontrivial solution if
$\left|\begin{array}{ccc}\lambda & \sin \alpha & \cos \alpha \\ 1 & \cos \alpha & \sin \alpha \\ -1 & \sin \alpha & -\cos \alpha\end{array}\right|=0$

Expanding the determinant along C_{1} we get
$\lambda\left(-\cos ^{2} \alpha-\sin ^{2} \alpha\right)-(-\sin \alpha \cos \alpha-\sin \alpha \cos \alpha)-\left(\sin ^{2} \alpha\right.$ $\left.-\cos ^{2} \alpha\right)=0$
$\Rightarrow-\lambda+\sin 2 \alpha+\cos 2 \alpha=0$
$\Rightarrow \lambda=\sin 2 \alpha+\cos 2 \alpha=\sqrt{2} \sin (\pi / 4+2 \alpha)$
$\Rightarrow-\sqrt{2} \leq \lambda \leq \sqrt{2}$
64. If $f(x)=\left\{\begin{array}{cl}\frac{1-[x]}{1+x} & , x \neq 0 \\ 1 & , x=0\end{array}\right.$ \qquad

Sol. (ABC) $f(x)=\left\{\begin{array}{ccc}\frac{2}{1+x} & , & -1<x<0 \\ 1 & , & x=0 \\ \frac{1}{1+x} & , \quad 0<x<1 \\ 0 & , & 1 \leq x<2\end{array}\right.$
$\lim _{x \rightarrow 0^{-}} f(x)=2 ; \lim _{x \rightarrow 0^{+}} f(x)=1 ; \lim _{x \rightarrow 1^{-}} f(x)=\frac{1}{2} ; \lim _{x \rightarrow 1^{+}} f(x)=0$
65. STATEMENT -1: If x, y, z are

Sol. (D) $x+y>z$ i.e. $1-z>z \quad$ i.e. $1>2 z$
similarly $1>2 x$ and $1>2 y$
$\therefore \quad 2 x-1<0,2 y-1<0,2 z-1<0$
$\therefore \quad A M<G M$
i.e. $\frac{(2 x-1)+(2 y-1)+(2 z-1)}{3}<\{(2 x-1)(2 y-1)(2 z-1)\}^{1 / 3}$
$\therefore \quad$ statement-1 is false $\quad \therefore \quad$ statement-2 is true
66. Let $y=\sin x$ and y_{r}

Sol. (A) $y=\sin x \quad y_{n}=\sin \left(x+\frac{n \pi}{2}\right)$
$y_{1}=\cos x=\sin \left(x+\frac{\pi}{2}\right)$
$y_{2}=\cos \left(x+\frac{\pi}{2}\right)=\sin \left(x+\frac{2 \pi}{2}\right)$
!
$y_{n}=\sin \left(x+\frac{n \pi}{2}\right)$
$y_{4(n+1)+k}=\sin \left(x+(4(n+1)+k) \frac{\pi}{2}\right)$
$=\sin \left(x+(4 n+k) \frac{\pi}{2}+2 \pi\right)=\sin \left(x+(4 n+k) \frac{\pi}{2}\right)=y_{4 n+k}$
$\therefore \quad$ Statement-2 is true
Thus $\quad y_{117}=y_{109+8}=y_{109}$
$y_{119}=y_{111+8}=y_{111}$
$y_{125}=y_{113+12}=y_{113}$
two rows are identical $\therefore \quad$ statement- 1 is true
67. STATEMENT-1 : Coefficient of x^{51} \qquad
Sol. (A) Coefficient of $x^{\frac{n(n+1)}{2}-4}$ in the expansion of $(x-1)$
$\left(x^{2}-2\right)$ \qquad $\left(x^{n}-n\right)$ is $-4+(-1)(-3)=-1$
68. If the equation of common tangent

Sol. (4) $\lambda^{2}=2+2 \sqrt{2}$
69. If largest subset of $(0, \mathbf{p})$

Sol. (5) $f^{\prime}(x)=12 \cos ^{3} x(-\sin x)+30 \cos ^{2} x(-\sin x)+12 \cos x(-\sin x)$

$$
\begin{aligned}
& =-3 \sin 2 x\left(2 \cos ^{2} x+5 \cos x+2\right) \\
& =-3 \sin 2 x(2 \cos x+1)(\cos x+2)
\end{aligned}
$$

When, $\quad f^{\prime}(x)=0 \quad \Rightarrow \sin 2 x=0 \Rightarrow \quad x=0, \frac{\pi}{2}, \pi$
or, $2 \cos x+1=0 \quad \Rightarrow x=\frac{2 \pi}{3}$
or, $\cos x+2=0 \quad$ (not possible)
Sign scheme for $f^{\prime}(x)$ in $[0, \pi]$ is as below.

$f(x)$ decreases on $\left(0, \frac{\pi}{2}\right) \cup\left(\frac{2 \pi}{3}, \pi\right)$
and increases on $\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$
70. The number of three digit numbers \qquad
Sol. (2) (i) $x=y>z \rightarrow{ }^{10} \mathrm{C}_{2}$
(ii) $\mathrm{x}=\mathrm{y}<\mathrm{z} \rightarrow{ }^{9} \mathrm{C}_{2}$
(iii) $x<y=z \rightarrow{ }^{9} \mathrm{C}_{2}$
(iv) $x>y=z \rightarrow{ }^{10} \mathrm{C}_{2}$

Total numbers $=2\left[{ }^{10} \mathrm{C}_{2}+{ }^{9} \mathrm{C}_{2}\right]=2.81$
$\Rightarrow \mathrm{a}=2$
71. Let tangent at a point P

Sol. (4) $x^{2 m} y^{\frac{n}{2}}=a^{\frac{4 m+n}{2}}$
$2 m \ell n x+\frac{n}{2} \ell n y=\frac{4 m+n}{2} \ell n a$
$\frac{(2 m)}{x}+\left(\frac{n}{2}\right) \cdot \frac{1}{y} \frac{d y}{d x}=0 ; \frac{d y}{d x}=\left(\frac{-2 m}{x}\right) \frac{2 y}{n}$
Let P be the point $\left(x_{1}, y_{1}\right)$.
So equation of tangent is
$y-y_{1}=\left(\frac{-4 m}{n} \cdot \frac{y_{1}}{x_{1}}\right)\left(x-x_{1}\right)$
Let tangent meets the axes at A and B respectively
$A \equiv\left(\frac{4 m+n}{4 m} x_{1}, 0\right) B=\left(0, \frac{4 m+n}{n} \cdot y_{1}\right)$

Let P devides $A B$ in ratio $\mu: 1$

$$
\therefore \quad x_{1}=\frac{\mu \cdot 0+1 \cdot\left(\frac{4 m+n}{4 m}\right) x_{1}}{\mu+1} \quad \therefore \quad 4 m+n=4 m(\mu+1)
$$

$$
\text { Also } \mu(4 m+n) \quad=n(\mu+1) \quad \therefore \quad \mu=\frac{n}{4 m} \quad \therefore \quad \lambda=4
$$

72. A ray of light moving parallel
el
Sol. (2) Focus of $(y-2)^{2}=4(x+1)$ is $x+1=1, y-2=0$
i.e. $(0,2)$
