RITS-2 JEE MAINS-2019 ANSWER KEY Code: 125776					
MATHEMATICS		PHYSICS		CHEMISTRY	
1	1	1	2	1	3
2	2	2	1		1
3	3	3	1	3	4
4	1	4	3	4	2
5	2	5	1	5	4
6	2	6	4	6	4
7	1	7	2	7	2
8	2	8	2	8	2
9	1	9	4	9	3
10	3	10	4	10	2
11	1	11	1	11	1
12	1	12	3	12	2
13	3	13	3	13	1
14	4	14	1	14	3
15	1	15	2	15	3
16	4	16	1	16	3
17	3	17	2	17	3
18	2	18	3	18	1
19	1	19	2	19	2
20	4	20	3	20	1
21	2	21	1	21	1
22	4	22	1	22	2
23	3	23	1	23	2
24	3	24	3	24	4
25	3	25	3	25	3
26	1	26	2	26	4
27	3	27	1	27	1
28	2	28	4	28	2
29	2	29	1	29	1
30	4	30	2	30	2

SOLUTION

1. Ans. (1)

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(p[x+1]-q[x-1]) \\
& =p(1)-q(-1)=p+q
\end{aligned}
$$

$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} p[x+1]-q[x-1]=2 p-q(0)=2 p$
$\because f(x)$ is continuos at $x=1$
$\therefore p+q=2 p \Rightarrow p=q \Rightarrow p-q=0$
2. Ans. (2)

Let $n(B)=x n(A)=x+2$
$\mathrm{n}(\mathrm{F})=\mathrm{y}$
$\mathrm{n}(\mathrm{C})=\mathrm{y}+3$
$\mathrm{n}(\mathrm{D})=\mathrm{z}$
$n(E)=z+5$
$x+y+z+x+2+y+3+z+5=40$
$x+y+z=15$ but $x \geq 1, y \geq 1$ and $z \geq 1$ So total ways of distribution si ${ }^{14} \mathrm{C}_{2}=91$
3. Ans. (3)

For the line to be co-planar
$\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ should be co-planar
$\left|\begin{array}{ccc}2 & 0 & \mathrm{k} \\ 1 & \mathrm{k} & -2 \\ 4 & 1 & -1-\mathrm{k}\end{array}\right|=0$
$\Rightarrow 2\left(-\mathrm{k}-\mathrm{k}^{2}+2\right)+\mathrm{k}(1-4 \mathrm{k})=0$
$-2 \mathrm{k}-2 \mathrm{k}^{2}+4+\mathrm{k}-4 \mathrm{k}^{2}=0$
$-6 \mathrm{k}^{2}-\mathrm{k}+4=0$
$6 \mathrm{k}^{2}+\mathrm{k}-4=0$
This equatiion has two distinct roots So two such planes exist.
4. Ans. (1)
$\mathrm{y}=\sin ^{2} \mathrm{x}+\operatorname{cosec}^{2} \mathrm{x}+2+\cos ^{2} \mathrm{x}+\sec ^{2} \mathrm{x}+$
$2+\tan ^{2} \mathrm{x}+\cot ^{2} \mathrm{x}+2$
$=1+6+1+\tan ^{2} \mathrm{x}+\cot ^{2} \mathrm{x}+\tan ^{2} \mathrm{x}+\cot ^{2} \mathrm{x}$
$=9+2\left(\tan ^{2} \mathrm{x}+\cot ^{2} \mathrm{x}\right)$
$=9+2\left[(\tan x-\cot x)^{2}+2\right]$
$=13+2(\tan x-\cot x)^{2}$
$\mathrm{y}_{\text {min }}=13=\mathrm{p}$
$\left[\frac{\mathrm{p}}{3}\right]=4$
5. Ans. (2)
$\mathrm{C}_{1}: \mathrm{z}+\overline{\mathrm{z}}=2|\mathrm{z}-1|$
Put $z=x+i y$
$2 \mathrm{x}=2|\mathrm{x}-1+\mathrm{iy}|$
$\mathrm{x}^{2}=\mathrm{x}(-1)^{2}+\mathrm{y}^{2}$
$\mathrm{Y}^{2}=2\left(\mathrm{x}-\frac{1}{2}\right)$
$C_{2}: \arg (z-(-1-i)=\alpha$
It's a ray emanating from $(-1,-1)$ and making angle α with the positive real axis C_{1} and C_{2} have exactly one point common
C_{2} must be tangent to C_{1}
$y+1=m(x+1)$
Solving C_{1} and C_{2}
$\mathrm{m}=1$
$y=x=1$
$\mathrm{P}\left(\mathrm{Z}_{0}\right)=1+\mathrm{i}$
$\left|Z_{0}\right|=\sqrt{2}$
6. Ans. (2)

Equation of $\frac{x-2}{1}=\frac{y+1}{1}=\frac{3-3}{1}=\lambda$
for point $A, Z=0 \Rightarrow \lambda=-3 \Rightarrow A(-1,-4,0)$

Similarly $B(0,-3,1)$ and $C(3,0,4)$
centroid of $\mathrm{AABC} \equiv\left(\frac{2}{3},-\frac{7}{3}, \frac{5}{3}\right)$
7. Ans. (1)

Let $\cos ^{-1} x+\cot ^{-1} x=f(x)$
Domain $x \in[-1,1]$ and $f(x)$ is decreasing function in its domain
at $\mathrm{x}=-1 \underset{\max }{\mathrm{f}}(\mathrm{x})=\pi+\frac{3 \pi}{4}=\frac{7 \pi}{4}$
at $\mathrm{x}=1 \underset{\text { min }}{\mathrm{f}(\mathrm{x})}=0+\frac{\pi}{4}=\frac{\pi}{4}$
$\Rightarrow \quad \frac{\pi}{4} \leq \mathrm{f}(\mathrm{x}) \leq \frac{7 \pi}{4}$
k can be $1,2,3,4,5$
8. Ans. (2)
$\mathrm{S}_{\mathrm{n}}=\mathrm{C}_{0} \mathrm{C}_{1}+\mathrm{C}_{1} \mathrm{C}_{2}+\mathrm{C}_{2} \mathrm{C}_{3}+\ldots \mathrm{C}_{\mathrm{n}-1} \mathrm{C}_{0}$
$=\mathrm{C}_{0} \mathrm{C}_{\mathrm{n}-1}+\mathrm{C}_{1} \mathrm{C}_{\mathrm{n}-2}+\mathrm{C}_{2} \mathrm{C}_{\mathrm{n}-3}+\ldots . .+\mathrm{Cn}-\mathrm{C}_{0}={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}-1}$
$\frac{\mathrm{S}_{\mathrm{n}+1}}{\mathrm{~S}_{\mathrm{n}}}=\frac{15}{4} \Rightarrow \frac{{ }^{2 \mathrm{n}+2} \mathrm{C}_{\mathrm{n}}}{{ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}-1}}=\frac{15}{4}$ on solving $\mathrm{n}=2$ or 4
9. Ans. (1)

Given $Z_{3}+i w Z_{2}=(1+i w) Z_{1}$
$Z_{3}-Z_{1}=\operatorname{iw}\left(Z_{1}-Z_{2}\right)$
$\frac{Z_{3}-Z_{1}}{Z_{2}-Z_{1}}=-i w$
$\frac{\mathrm{Z}_{3}-\mathrm{Z}_{1}}{\mathrm{Z}_{2}-\mathrm{Z}_{1}}=\mathrm{e}^{\mathrm{i} \pi / 6}$
$=\left|\mathrm{Z}_{3}-\mathrm{Z}_{1}\right|=\left|\mathrm{Z}_{2}-\mathrm{Z}_{1}\right|$ with $\angle \mathrm{A}=\frac{\pi}{6}$
10. Ans. (3)

Centroid of the given triangle $=(4,2)$
So, centroid of the image traingle is itself the image of the original centroid
$\mathrm{G}_{1} \equiv(4,-2)$
$\mathrm{G}_{2} \equiv(-4,2)$
$\mathrm{G}_{3} \equiv(2,4)$
Area of $\Delta \mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}=\left|\frac{1}{2}\right| \begin{array}{ccc}4 & -2 & 1 \\ -4 & 2 & 1 \\ 2 & 4 & 1\end{array}| |=20$ unit 2
Ans. (1)

Component of \vec{p} in the direction of \vec{q}
$=\frac{(\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}) \overrightarrow{\mathrm{q}}}{|\overrightarrow{\mathrm{q}}|^{2}}=\frac{-5 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}}{3}$
Component of $\overrightarrow{\mathrm{p}}$, perpendicular to
$\overrightarrow{\mathrm{q}}=\overrightarrow{\mathrm{p}}-\left(\frac{-5 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}}{3}\right)$
$=(2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})-\left(\frac{-5 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}}{3}\right)$
$=\frac{11}{3} \hat{\mathrm{i}}+\frac{7}{3} \hat{\mathrm{j}}-\frac{4}{3} \hat{\mathrm{k}}$
12. Ans. (1)

Suppose $a-d$, $a, a+d$ are roots of the given equation
$\therefore \quad a-d+a+a+d=6$
$\Rightarrow \mathrm{a}=2$
\Rightarrow roots are $2-\mathrm{d}, 2,2 \mathrm{~d}$ are the roots and
2. $(2-\mathrm{d})+2 .(2+\mathrm{d})+2-\mathrm{d})(2+\mathrm{d})=\beta_{1}$
$\Rightarrow \mathrm{d}=\sqrt{12-\beta_{1}}$
$\Rightarrow \beta_{1}=12-\mathrm{d}^{2}$ and $2(2-\mathrm{d})(2-\mathrm{d})=\beta_{2}$
$\Rightarrow \beta_{2}=8-2 d^{2}$
Hence $\beta_{1}+\beta_{2}=20-3 d^{2}$
$\left(\beta_{1}+\beta_{2}\right)_{\max }=17$ when $\mathrm{d}=1$
13. Ans. (3)

As $2 \alpha^{2}, \alpha^{4}, 24$ are in AP
So, $2 \alpha^{4}=2 \alpha^{2}+24 \Rightarrow \alpha^{4}-\alpha^{2}-12=0$
$\Rightarrow\left(\alpha^{2}-4\right)-\left(\alpha^{2}+3\right)=0$
$\therefore \alpha= \pm 2$ (As $\alpha^{2}+3 \neq 0$ for any real α)
Also, $1, \beta^{2}, 6-\beta^{2}$ are in G. P
So, $\beta^{4}=1\left(6-\beta^{2}\right) \Rightarrow \beta^{4}+\beta^{2}-6=0$
$\Rightarrow\left(\beta^{2}+3\right)\left(\beta^{2}-2\right)=0 \Rightarrow \beta= \pm \sqrt{2}$
(As $\beta^{2}+3 \neq 0$ for any real β)
Hence, $\alpha_{1}^{2}+\alpha_{2}^{2}+\beta_{1}^{2}+\beta_{2}^{2}=12$
14. Ans. (4)

Let α be a root of $f(x)=0$
$\therefore \mathrm{f}(\alpha)=0$ and $\mathrm{f}(\mathrm{f}(\alpha))=0$
$\Rightarrow \mathrm{f}(0)=0 \Rightarrow \mathrm{~b}=0$
$\therefore \mathrm{f}(\mathrm{x})=\mathrm{x}(\mathrm{x}+\mathrm{a})=0 \Rightarrow \mathrm{x}=0$ or $\mathrm{x}=-\mathrm{a}$
$f(f(x))=x(x+a)\left(x^{2}+a x+a\right)=0$
$\therefore \mathrm{x}^{2}+\mathrm{ax}+\mathrm{a}=0$ should have no real roots besides
0 and $-\mathrm{a} \quad \mathrm{D}=\mathrm{a}^{2}-4 \mathrm{a}<0 \Rightarrow 0<\mathrm{a}<4$

If the roots of $x^{2}+a x+a=0$ is either $x=0$
or $\mathrm{x}=-\mathrm{a}$ then $\mathrm{a}=0$
$\therefore \alpha \in[0,4) \Rightarrow a=0,1,2,3$
Number of ordered pairs $=4$
15. Ans. (1)
inequation $\left(x^{2}+1\right)>0$ is satisfies $\forall x \in R$
Hence the inequations
$(a-1) x^{2}-(a+|a-1|+2) x+1 \geq 0$ is satisfied $\forall x \in R$
$\Rightarrow(a-1) x^{2}-(a+|a-1|+2) x+a+1 \geq 0 \quad \forall x \in R$
So, $(a-1)>0$ and
$\mathrm{D} \leq 0 \Rightarrow(\mathrm{a}+|\mathrm{a}-1|+2)^{2}-4(\mathrm{a}-1) \leq 0$
(As $\mathrm{a}>1 \Rightarrow|\mathrm{a}-1|=\mathrm{a}-1$)
$\Rightarrow 4 \mathrm{a}^{2}+5 \leq 0$ which is not possible for any real values of 'a'
Hence no such real 'a' exists
16. Ans. (4)
$\mathrm{a}_{0} \mathrm{C}_{0}-\mathrm{a}_{1} \mathrm{C}_{1}+\mathrm{a}_{2} \mathrm{C}_{2}-\mathrm{a}_{3} \mathrm{C}_{3}+\ldots .+\mathrm{a}_{2102} \mathrm{C}_{2012}$
$=\mathrm{a}_{0}\left(\mathrm{C}_{0}-\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots . .+\mathrm{C}_{2102}\right)-\mathrm{d}\left(\mathrm{C}_{1}-2 \mathrm{C}_{2}+\right.$
$3 \mathrm{C}_{3}-4 \mathrm{C}_{4}+{ }^{2012} \mathrm{C}_{2012}$)
$=\mathrm{a}_{0}(0)-\mathrm{d}\left(\mathrm{C}_{1}-2 \mathrm{C}_{2}+3 \mathrm{C}_{3}=4 \mathrm{C}_{4}+\ldots\right.$.
${ }^{2012} \mathrm{C}_{2012}$)
Now $(1+\mathrm{x})^{2012}=\mathrm{C}_{0}+\mathrm{C}_{1} \mathrm{x}+\mathrm{C}_{2} \mathrm{x}^{2}+\ldots+$ $\mathrm{C}_{2012} \mathrm{X}^{2012}$
Differentiate and put $\mathrm{x}=-1$
$0=\mathrm{C}_{1}-2 \mathrm{C}_{2}+3 \mathrm{C}_{3}-4 \mathrm{C}_{4}+\ldots .-{ }^{2012} \mathrm{C}_{2012}$
17. Ans. (3)

Let $x_{i}=2 n_{i}-1$ where $n_{1}, n_{2}, n_{3}, n_{4} \geq 1$
Hence we have
$\left(2 n_{1}-1\right)+\left(2 n_{2}-1\right)+\left(2 n_{3}-1\right)+\left(2 n_{4}-1\right)=98$
$n_{1}+n_{2}+n_{3}+n_{4}=51$
giving $n_{1}, n_{2}, n_{3}, n_{4}$ each equal to 1
We have $n_{1}+n_{2}+n_{3}+n_{4}=47$
using beggar $\underbrace{00 \ldots \ldots .0}_{47} \underbrace{\emptyset \emptyset \emptyset}_{3}$
$\Rightarrow{ }^{50} C_{3}=\frac{50.49 .48}{6}=19600=\frac{n}{100}=\frac{n}{100}=196$
18. Ans. (2)

For real λ
$f(x)=x^{2}+2 b x+2 c^{2}$
$\Rightarrow(x+b)^{2}+2 c^{2}-b^{2} \geq\left(2 c^{2}-b^{2}\right)$
$f(x)_{\text {min }}=2 c^{2}-b^{2}$
$g(x) \Rightarrow-x^{2}-2 c x+b^{2}$
$\Rightarrow-(x+c)^{2}+c^{2}+b^{2}$
$\Rightarrow\left(b^{2}+c^{2}\right)-(x+c)^{2} \leq\left(b^{2}+c^{2}\right)$
$g(x)_{\text {max }}=b^{2}+c^{2}$
By the given condition $2 c^{2}-b^{2}>b^{2}+c^{2}$
$|c|>\sqrt{2}|b|$
19. Ans. (1)

Since $\cos (n!\pi x)$ will be a proper fraction between -1 and +1 (excluding 0 and 1) and (it is) $\rightarrow 0$ as $m \rightarrow \infty$.
20. Ans. (4)
$x^{2}-y^{2}=8$
$\Rightarrow 2 x-2 y \frac{d y}{d x}=0$
$\Rightarrow \frac{-1}{\left(\frac{d y}{d x}\right)}=\frac{-y}{x}$
At point $\left(\frac{-5}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$
$\Rightarrow \frac{-1}{\left(\frac{d y}{d x}\right)}=\frac{3}{5}=m_{1}$
Also $9 x^{2}+25 y^{2}=225$
$\Rightarrow 18 x+50 y \frac{d y}{d x}=0$
$\Rightarrow-\frac{d y}{d x}=\frac{25 y}{9 x}$
At point $\left(\frac{-5}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$
$-\frac{d x}{d y}=-\frac{5}{3}=m_{2}$
$\because m_{1} m_{2}=-1$
so $\theta=90^{\circ}=\frac{\pi}{2}$
21. Ans. (2)
$\because \sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\pi$
$\therefore \sin ^{-1} x+\sin ^{-1} y=\pi-\sin ^{-1} z$
$\Rightarrow \sin ^{-1}\left[x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right]=\pi-\sin ^{-1} z$
$\Rightarrow x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}=z$
22. Ans. (4)

When $\mathrm{x}<0$
$\Rightarrow|z|=|z-2|$
$\Rightarrow|z|^{2}=|z-2|^{2}$
$\Rightarrow z \bar{z}=(z-2)(\bar{z}-2)$
$\bar{z}+z=2$ so $\mathrm{x}=1$ which is not possible also when $\mathrm{x}>0$
$|z|=|z+2|$
$\Rightarrow|z|^{2}=|z+2|^{2}$
$\Rightarrow z \bar{z}=(z+2)(\bar{z}+2)$
$\Rightarrow z+\bar{z}=-2$ so $\mathrm{x}=-1$ which is not possible
No such z possible
23. Ans. (3)

The system of linear equation will have a non zero
solution if $\left|\begin{array}{ccc}a^{3} & (a+1)^{3} & (a+2)^{3} \\ a & (a+1) & (a+2) \\ 1 & 1 & 1\end{array}\right|=0$
Now operate $c_{2}-c_{1}$ and $c_{3}-c_{2}$, then expand.
24. Ans. (3)

$$
\begin{aligned}
B & =C A C^{-1} \\
B^{2} & =\left(C A C^{-1}\right)\left(C A C^{-1}\right)=C A^{2} C^{-1} \\
B^{3} & =B^{2} B=\left(C A^{2} C^{-1}\right)\left(C A C^{-1}\right) \\
& =C A^{2}\left(C^{-1} C\right) A C^{-1} \\
& =C A^{2} \cdot A C^{-1} \\
& =C A^{3} C^{-1}
\end{aligned}
$$

25. Ans. (3)

$$
\begin{array}{cccc}
\omega^{\mathrm{r}_{1}}+\omega^{\mathrm{r}_{2}}+\omega^{\mathrm{r}_{3}}=0 & & \left\{1+\omega+\omega^{2}=0\right\} \\
\mathrm{r}_{1} & \mathrm{r}_{2} & \mathrm{r}_{3} & \\
\downarrow & \downarrow & \downarrow &
\end{array}
$$

3 or 61 or 42 or 5
required prob. $=\frac{2 \times 2 \times 2 \times \underline{3}}{6^{3}}=\frac{2}{9}$
26. Ans. (1)

In right angled $\triangle P A C$
$\tan \frac{\theta}{2}=\frac{C A}{P A}=\sqrt{\frac{g^{2}+f^{2}-c}{S_{1}}}$

Now $\cos \theta=\frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}$
27. Ans. (3)

Equation of the tangent at the vertex is $x-y+1=0$

Equation of the axis of the parabola is $x+y+k=0$
...(ii) Since it passes through $(0,0)$
$0+0+k=0$
$\Rightarrow k=0$
\therefore Equation of axis is $x+y=0$

Where z is a point on directrix
Solving (i) and (iii) we get $A\left(\frac{-1}{2}, \frac{1}{2}\right)$
$\therefore \mathrm{z}$ is $(-1,1)$
Now directrix is $x-y+c=0$
But equation (iv) is passes through z
$-1-1+c=0$
$\Rightarrow c=2$
So directrix is $x-y+2=0$
Using PS = PM
$\mathrm{PS}^{2}=\mathrm{PM}^{2}$
28. Ans. (2)

Equation of a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
$\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$

$A \rightarrow\left(\frac{a}{\cos \theta}, 0\right) B \rightarrow\left(0, \frac{b}{\sin \theta}\right)$
Let P is the mid point of $A B, P \rightarrow(h, k)$
$k=\frac{a}{2 \cos \theta}$
$k=\frac{b}{2 \cos \theta}$
Eliminate θ by (i) and (ii)
29. Ans. (2)

$$
\begin{aligned}
& \mathrm{P}\left(\frac{6}{3}, \frac{6}{6}\right) \equiv(2,2) \\
& \mathrm{Q}\left(\frac{3}{3}, \frac{12}{6}\right) \equiv(1,4) \\
& \mathrm{m}_{\mathrm{OP}}=1 \text { and } \mathrm{m}_{\mathrm{OQ}}=4 \\
& \Rightarrow \quad \mathrm{~m}_{\mathrm{OP}}+\mathrm{m}_{\mathrm{OQ}}=\frac{10}{2}
\end{aligned}
$$

30. Ans. (4)

Probability that problem is not solved by $1^{s t}=1-\frac{1}{2}=\frac{1}{2}$
Probability that problem is not solved by $2^{n d}=1-\frac{1}{3}=\frac{2}{3}$
Probability that problem is not solved by $3^{r d}=1-\frac{1}{4}=\frac{3}{4}$
\therefore Probability that problem is not solved by any one of the three $=\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4}=\frac{1}{4}$

Hence the required Probability $1-\frac{1}{4}=\frac{3}{4}$
31. Ans. (2)
32. Ans. (1)
33. Ans. (1)
34. Ans. (3)

Sol. Newton's second law gives
$N+M g \cos \theta=\frac{m v^{2}}{R}$
Conservation of mechanical energy gives
$\frac{1}{2} m v^{2}=m g R(1-\cos \theta) \Rightarrow v^{2}=2 g R(1-\cos \theta)$
$N=\frac{m v^{2}}{R}-m g \cos \theta=m g(2-3 \cos \theta)$
Also $2 N \cos \theta=M g \Rightarrow 2 m g(2-3 \cos \theta) \cos \theta=M g$
Maximum value of upward force can be achieved by $\frac{d}{d \theta}(2-3 \cos \theta) \cos \theta=0$
$\Rightarrow \sin \theta=0$ or $\cos \theta=\frac{1}{3}$
So $2 m g(2-1) \frac{1}{3}=M g, \frac{2}{3} m=M$

$$
\frac{m}{M}>\frac{3}{2}
$$

So minimum value is $\frac{3}{2}$
35. Ans. (1)

Sol. The moment of inertia will be least about the centre of mass of the rod.
$X_{c m}=\frac{1}{m} \int x d m=\frac{1}{m} \int_{0}^{L}(1+k x) d x=\frac{L^{2}}{2}+\frac{K L^{3}}{3}$
$M=\int d m=\int_{0}^{L}(1+k x) d x=\left(L+\frac{K L^{2}}{2}\right)$
$X_{c m}=\frac{\frac{L^{2}}{2}+\frac{K L^{3}}{3}}{L+\frac{K L^{2}}{2}}=\frac{\frac{L}{2}+\frac{K L^{2}}{3}}{1+\frac{K L}{2}}=\frac{\frac{3 L+2 K L^{2}}{6}}{\frac{2+K L}{2}}$
$X_{c m}=\left(\frac{3 L+2 K L^{2}}{6+3 K L}\right)$
36. Ans. (4)

Sol. As electric field and gravitational fields are conservative the work done by them in any closed loop must be zero.

Lets make a charge q_{0} move along a square loop abcd as shown.

The work done along bc and da will be zero as $\theta=90^{\circ}$. But the net work done is not zero as strength of \vec{E} along ab and cd are different. So these lines cannot qualify as electric or gravitational field lines not even non-uniform.
37. Ans. (2)

Sol. As the sphere is grounded it's potential will always be zero. As the particle gets closer to the sphere the charge density will increase so as to balance the effect of the charge.
38. Ans. (2)

Sol. $\quad P T^{3 / 2}=$ constant

$$
\begin{aligned}
P \times\left(\frac{P V}{n R}\right)^{3 / 2}=\mathrm{constant} & \Rightarrow \mathrm{P}^{\frac{5}{2}} V^{\frac{3}{2}}=\mathrm{constant} \\
& \Rightarrow P V^{\frac{3}{5}}=\text { constant }
\end{aligned}
$$

$C=C_{v}+\frac{R}{1-x}$ for a process $P V^{x}=$ constant
$\Rightarrow C=\frac{5 R}{2}+\frac{R}{1-\frac{3}{5}}=\frac{5 R}{2}+\frac{R}{2 / 5}=5 R$
39. Ans. (4)

Sol. For non-uniform circular motion the total acceleration will be the resultant of radial and tangential. So it need not be directed towards the centre but for the radial acceleration we need a variable force as the acceleration is always directed towards the center.
40. Ans. (4)

Sol. The nuclear force favors parallel spin. So the nuclear force between the protons will be stronger but the protons are also going to repel each other. So in order to find the net force we need to have numerical values to compare them.
41. Ans. (1)
42. Ans. (3)

Sol. $\tan \phi=\frac{X_{L}}{R}$,
$X_{L}=2 \pi f L=2 \pi \times 50 \times \frac{2}{\pi} \times 10^{-3}=0.2 \Omega$
$\tan \phi=\frac{0.2}{0.15}=\frac{4}{3}$ and in LR circuit voltage leads current.
43. Ans. (3)

Sol. As the loop enters the region it will experience a magnetic force in a direction opposite to gravity but still gravitational force may be greater than the magnetic force and speed may increase. Once it gets completely inside the speed will increase after that instant.
44. Ans. (1)

Sol. $\frac{\mathrm{F}}{\ell}=\frac{\mu_{0} \mathrm{i}_{1} \mathrm{i}_{2}}{2 \pi \mathrm{~d}}$
Using the concept, parallel currents attract and opposite connects repel,
Force acting on wire i_{2} will be highest followed by i_{3} and then i_{1}
45. Ans. (2)

Sol. $\quad V_{\text {in }} \rho_{\text {water }} g=V \rho_{\text {wax }} g, V_{\text {out }}=\frac{V}{2}$
$A h=\frac{A L}{2}, \frac{d h}{d t}=\frac{1}{2} \frac{d L}{d t}=2 \mathrm{~cm} / \mathrm{hr}$
46. Ans. (1)

Sol. Escape speed $=\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}$
$\mathrm{Ve}^{\prime}=\sqrt{\frac{2 \mathrm{GM} / 2}{\mathrm{R} / 2}}=\mathrm{Ve}$
$\mathrm{Ve}=$ escape speed of each
Using Vrms $=\sqrt{\frac{3 R T}{M}}$
If the rms speed of a gas molecule is more than the escape speed of the planet then the molecule will escape.
47. Ans. (2)
48. Ans. (3)

Sol. Using $\mu=\frac{C}{V}$

$$
\begin{aligned}
& \frac{\mu_{2}}{\mu_{1}}=\frac{v_{1}}{v_{2}} \Rightarrow \mu_{2}=\left(\frac{v_{1}}{v_{2}}\right) \mu_{1}=\left(\frac{2 \times 10^{8}}{2.5 \times 10^{8}}\right) \times 1.5 \\
& \mu_{2}=\frac{6}{5} \Rightarrow \mu_{2}=1.2
\end{aligned}
$$

49. Ans. (2)
50. Ans. (3)

Sol. Using, $\Delta \mathrm{E}=\frac{\mathrm{hc}}{\lambda}=\frac{1242 \mathrm{eV}-\mathrm{nm}}{0.021 \mathrm{~nm}}$

$$
=\frac{1242}{21 \times 10^{-3}} \mathrm{eV}=59 \mathrm{KeV}
$$

51. Ans. (1)

Sol. Using, $\lambda=\frac{\mathrm{h}}{\mathrm{p}}$
$P=\sqrt{2 \mathrm{mK}}$, where K is Kinetic energy
As kinetic energy is doubled and velocity is also doubled mass becomes half if initial, hence momentum remains unchanged and so is de-Broglie's wavelength
52. Ans. (1)
53. Ans. (1)

Sol. Given $\sigma=\frac{\mathrm{q}_{1}}{4 \pi \mathrm{R}^{2}}=\frac{\mathrm{q}_{2}}{4 \pi \mathrm{r}^{2}}$
$\mathrm{V}_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}_{1}}{\mathrm{R}}, \mathrm{V}_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}_{2}}{\mathrm{r}}, \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{\mathrm{R}}{\mathrm{r}}$
54. Ans. (3)
55. Ans. (3)
56. Ans. (2)

Sol. As the sphere is floating completely submerged the upthrust will be equal to weight of the sphere.
$B=\rho_{w} V g$
$\mathrm{V}=$ total volume of the concrete
$M g=\left[\rho_{c} \times \frac{4 \pi}{3}\left(R^{3}-r^{3}\right)+\rho_{s} \times \frac{4 \pi}{3} r^{3}\right] g$
$B=M g$
$\Rightarrow M g=\rho_{w} \times \frac{4 \pi}{3} R^{3} g=\left(\rho_{C} \times \frac{4 \pi}{3}\left(R^{3}-r^{3}\right)+\rho_{s} \frac{4 \pi}{3} r^{3}\right) g$
Solving this we will get $\mathrm{r}=\left(\frac{2}{3}\right)^{1 / 3} \mathrm{R}$
$\frac{\text { mass of concrete }}{\text { mass of sawdust }}=4$
57. Ans. (1)

Sol. As the system is already balanced about Y-axis, the mass has to be kept on the line OE Using
$\mathrm{X}_{\mathrm{cm}}=\frac{2 \times(-2)+2 \times(-2)+8(2)}{\mathrm{M}}=0$
$\Rightarrow 8 \mathrm{x}=8 \quad \Rightarrow \mathrm{x}=1 \mathrm{~m}$
58. Ans. (4)

Sol.

Using momentum conservation
$m v_{0}=m v \cos 30^{\circ}+m v \cos 30^{\circ}$
$9=\frac{\sqrt{3}}{2} \mathrm{v} \times 2 \Rightarrow 9=\sqrt{3} \mathrm{v}$
$\Rightarrow \mathrm{v}=3 \sqrt{3} \mathrm{~m} / \mathrm{s}$
As there was no momentum along Y-axis the speed of each ball has to be same.
59. Ans. (1)
60. Ans. (2)

Sol. Given $u+v=100 \mathrm{~cm}$
Using Lens formula with sign convection
$\frac{1}{(100-\mathrm{u})}+\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}}$ and $\frac{1}{(60-\mathrm{u})}+\frac{1}{(\mathrm{u}+40)}=\frac{1}{\mathrm{f}}$
equating them, $\mathrm{u}=30 \mathrm{~cm}$
Now putting in any of the equations
$\frac{1}{70}+\frac{1}{30}=\frac{1}{\mathrm{f}} \Rightarrow \frac{1}{\mathrm{f}}=\frac{1}{21 \mathrm{~cm}}$
$\mathrm{P}=5 \mathrm{~m}^{-1}$
61. Ans. (3)

All the six face centred Cl^{-}ions and body centred
Na^{+}is removed, so formula will be $\mathrm{Na}_{3} \mathrm{Cl}_{3}$, so
Z $=3$
62. Ans. (1)

7 pairs of electrons means $\mathrm{sp}^{3} \mathrm{~d}^{3}$ hybridization, in
which planar structure is possible for five bond pairs and two lone pairs i.e pentagonal planar
63. Ans. (4)

Given reactant is ketal, which on hydrolysis dissociates to from phenol and

64. Ans. (2)
$\mathrm{Mn}_{2} \mathrm{O}_{7}, \mathrm{Cl}_{2} \mathrm{O}_{7}, \mathrm{SeO}_{2}$ are acidic oxides, so can react with bases while $\mathrm{ZnO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{BeO}, \mathrm{PbO}, \mathrm{As}_{2} \mathrm{O}_{3}$ are amphoteric oxides, so they can also react with bases
65. Ans. (4)

At anode $: \mathrm{M}_{(\mathrm{s})} \longrightarrow \mathrm{M}_{(\text {(aq })}^{2+}+2 \mathrm{e}^{-}$
At cathode $: \mathrm{M}(\mathrm{OH})_{2(\mathrm{~S})} \longrightarrow \mathrm{M}^{2+}+2 \mathrm{OH}_{(\text {aq })}^{-}$
$\mathrm{M}_{(\mathrm{aq})}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{M}_{(\mathrm{s})}$
Net cell rx ${ }^{\mathrm{n}}$:
$\left\{\mathrm{M}_{(\mathrm{s})}\right\}_{\mathrm{a}}+\left\{\mathrm{M}(\mathrm{OH})_{2(\mathrm{~s})}\right\}_{\mathrm{c}} \longrightarrow$

$$
\left\{\mathrm{M}_{(\mathrm{aq})}^{2+}\right\}_{\mathrm{a}}+\left\{2 \mathrm{OH}_{(\mathrm{aq})}^{-}\right\}_{\mathrm{c}}+\left\{\mathrm{M}_{(\mathrm{s})}\right\}_{\mathrm{c}}
$$

So, Applying nernst equation
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{0.059}{2} \log _{10}\left\{\left[\mathrm{M}^{2+}\right]_{\mathrm{a}}\left[\mathrm{OH}^{-}\right]_{\mathrm{c}}^{2}\right\}$
66. Ans. (4)

For free expansion since $\Delta \mathrm{S}_{\text {sys }}$ is non zero so $\Delta \mathrm{S}_{\text {total }} \& \Delta \mathrm{G}_{\text {sys }}$ are non zero.
67. Ans. (2)

68. Ans. (2)

On mixing HCl and $\mathrm{H}_{2} \mathrm{~S}, \mathrm{Ag}^{+}$And Cu^{2+} will be precipitated out. Now Ca^{2+} will give white ppt with $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
69. Ans. (3)

$$
\begin{aligned}
\text { Efficiency } & =\frac{\text { work done }}{\text { heat supplied }}=1-\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \\
& =\frac{\text { work done }}{37.3}=1-\frac{283}{373}
\end{aligned}
$$

70. Ans. (2)
$\left[\mathrm{Fe}(\mathrm{en})_{3}\right]^{2+}$ is obtained as X
Since 'en' is a strong field ligand, so the complex will be low spin \& diamagnetic Hybridization will be $d^{2} s p^{3}$ (i.e inner orbital complex)
71. Ans. (1)

(C)
$\mathrm{HCOONa} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{HCOOH}$
72. Ans. (2)

Balance the given reaction in basic medium as $8 \mathrm{CrO}_{4}^{2-}+3 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 8 \mathrm{CrO}_{2}^{-}+6 \mathrm{SO}_{4}^{2-}+2 \mathrm{OH}^{-}$ so, $\frac{\text { rate of consumption of } \mathrm{CrO}_{4}^{2-}}{\text { rate of formation of } \mathrm{OH}^{-}}=\frac{8}{2}=4$
73. Ans. (1)
74. Ans. (3)

75. Ans. (3)

That is critical temperature (not inversion temperature) at which distinction between a liquid and a gas disappear.
76. Ans. (3)
$\lambda_{\mathrm{m}}^{\infty}$ for $\mathrm{CH}_{3} \mathrm{COOH}=91+421.5-126=386.5$
$\lambda_{\mathrm{m}}^{\infty}=\frac{\frac{1}{\mathrm{R}}\left(\frac{\ell}{\mathrm{a}}\right) \times 1000}{\text { Molarity }}=\frac{\frac{1}{520} \times(2.01) \times 1000}{0.1}$
$=38.65$

So, $\alpha=\lambda_{\mathrm{m}}^{\mathrm{c}} / \lambda_{\mathrm{m}}^{\infty}=38.65 / 386.5=0.1$
Now, $\left[\mathrm{H}^{+}\right]=\mathrm{C} \propto=0.1 \times 0.1=10^{-2}$
so, $\mathrm{pH}=2$
77. Ans. (3)

78. Ans. (1)

Formation of micelle occurs above kraft temperature. Colloid of $\mathrm{Fe}(\mathrm{OH})_{3}$ in excess NaOH is negatively charged, so will move towards anode. Also Co-agulation value decreases as Co-agulation power increases.
79. Ans. (2)

Enthalpy ' H ' is a state function, so independent of path.
80. Ans. (1)

Aldehyde (not acid) will be obtained on reductive ozonolysis by $\mathrm{O}_{3} / \mathrm{Zn} / \mathrm{H}_{2} \mathrm{O}$.
81. Ans. (1)

First of all, Aldol condensation occurs

82. Ans. (2)

83. Ans. (2)

As NH_{3} is strong field ligand while F^{-}is weak field ligand so $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is diamagnetic while $\left[\mathrm{CoF}_{6}\right]^{3-}$ is paramagnetic $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is tetrahedral while $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is square planar
84. Ans. (4)

At high pressure, $Z=1+\frac{\mathrm{Pb}}{\mathrm{RT}}$
85. Ans. (3)

Cupellation is used when impurity has tendency to form volatile oxides.
86. Ans. (4)
$\mathrm{XeF}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Xe}+\mathrm{O}_{2}+\mathrm{HF}$
87. Ans. (1)
$\mathrm{NH}_{4} \mathrm{NO}_{3} \xrightarrow{\Delta} \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
88. Ans. (2)

Molarity of remaining $\mathrm{Ca}^{2+}=\frac{3 \times 10^{-3}}{150 \times 10^{-3}}$
89. Ans. (1)

NaCl type crystals normally show schotky defect.
90. Ans. (2)

For the line almost parallel to x-axis, Entropy change ($\Delta \mathrm{S}$) should be nearly zero, which is true for $\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}$

