Hints \& Solution

SECTION - II

Mathematics

1. (B)

Point A reaches point X , when the wheel makes half a rotation i.e. BX
is equal to half the perimeter of the wheel $\mathrm{BX}=\frac{1}{2}(2 \pi \mathrm{r})=\pi \mathrm{r}$
$\mathrm{Ax}=\sqrt{4 \mathrm{r}^{2}+(\pi \mathrm{r})^{2}}=\mathrm{r} \sqrt{4+\pi^{2}}$
Also $\mathrm{AB}=2 \mathrm{r}$

Required ratio $\frac{\mathrm{Ax}}{\mathrm{AB}}=\frac{\mathrm{r} \sqrt{4+\pi^{2}}}{2 \mathrm{r}}=\frac{1}{2} \sqrt{\pi^{2}+4}$.
2. (D)

Initial order 100, 99, 98,, 3, 2, 1
The cards to be arranged $1,2,3,4, \ldots . ., 100$
Minimum no. of switches needed between two adjacent cards at a time is
$99+98+\ldots \ldots+3+2+1=\frac{99 \times 100}{2}=4950$
3. (A, C, D)
$f(x, y)=\left(x^{2010}+y^{2010}\right)^{2010}-\left(x^{2009}\right)^{(2010)^{2}}-\left(y^{2009}\right)^{(2010)^{2}}$
$\Rightarrow\left(x^{2010}+y^{2010}\right)^{2010}-\left(x^{2009 \times 2010}\right)^{2010}-\left(y^{2009 \times 2010}\right)^{2010}$
$\Rightarrow\left(x^{2010}+y^{2010}\right)^{2010}-\left(x^{2010}\right)^{2010}-\left(y^{2010}\right)^{2010}$
$\left[\because(a+b)^{n}-a^{n}-b^{n}\right.$ is always divisible by ab for all $\left.\mathbf{n} \in \mathrm{N}\right]$
$\therefore \mathrm{f}(\mathrm{x})$ is divisible by $(\mathrm{xy})^{2010}$
4. (C)

Let $\mathrm{P}(\mathrm{A})=10 \times \mathrm{A}$
$P(X)=(X-1)(X-2)(X-3)(X-A)+10 \times X$
5. (A,B,C,D)

The point (5 , a) will lie on the perpendicular bisector of the line joining $(8,-2)$ and $(2,-2)$. So it's true for every values of ' a '
6. $(A, B, C) \quad$ Volume of water raised $=$ Volume of the sphere

$$
\begin{aligned}
& \text { (H) }=\frac{4}{3} A r^{\gamma} \\
& H=\frac{4}{3} r \\
& H=\frac{2}{3} h
\end{aligned}
$$

raised height $=\frac{2}{3} \mathrm{~h}$

$$
\text { water available }=\frac{1}{3} \mathrm{~h}
$$

The water will stand at top of the end.
7. (D)
$(x+1)=\log _{2} \frac{\left(2^{x}+3\right)^{2}}{\left(1980-2^{-x}\right)}$
$2^{(x+1)}=\frac{\left(2^{x}+3\right)^{2}}{1980-2^{-x}}$
$2 \times 2^{x}=\frac{4^{x}+9+6 \times 2^{x}}{1980-2^{-x}}$
$3960 \times 2^{x}-2=\left(2^{x}\right)^{2}+6 \times 2^{x}+9$
Let $2^{x}=y$
$y^{2}-3954 y+11=0$
$\left(2^{x}\right)^{2}-3954\left(2^{x}\right)+11=0$
$\Rightarrow 2^{\mathrm{x}_{1}} \times 2^{\mathrm{x}_{2}}=11$
$\Rightarrow 2^{x_{1}+x_{2}}=11$
$\Rightarrow \mathrm{x}_{1}+\mathrm{x}_{2}=\log _{2} 11$
8. (A, D)
$P(a)=1+0+0=1$
$P(b)=0+1+0=1$
$P(c)=0+0+1=1$
As it is a quadratic polynomial and $\mathrm{P}(\mathrm{x})$ is coming constant at $\mathrm{x}=\mathrm{a}, \mathrm{b}, \mathrm{c}$. So, it means that it is a constant polynomial and its value is 1 .
9. (B)

Diameter of sphere $=$ diagonal of cube $=\sqrt{3} r=\sqrt{r^{2}+r^{2}+r^{2}}$
Radius of sphere $=\frac{\sqrt{3} r}{2}$
For right circular cone $h=2 R$
So $1=\sqrt{R^{2}+(2 R)^{2}}=\sqrt{5} R$
then radius of sphere $=\frac{\Delta}{\mathrm{S}}=\frac{\frac{1}{2} \times 2 \mathrm{R} \times 2 \mathrm{R}}{\frac{(2 \mathrm{R}+2 \sqrt{5} \mathrm{R})}{2}}$
$\frac{\sqrt{3} \mathrm{r}}{2}=\frac{2}{(1+\sqrt{5})} \mathrm{R}$
$\Rightarrow R=\frac{\sqrt{3}(1+\sqrt{5}) \mathrm{r}}{4}$
So curved surface area of collinear is $2 \pi R \times h$
$=2 \pi \times \mathrm{R} \times 2 \mathrm{R}$
$=4 \pi \mathrm{R}^{2}$
$=4 \times \pi \times \frac{(\sqrt{3}+\sqrt{15})^{2}}{16} \times \mathrm{r}^{2}=\pi\left(\frac{\sqrt{3}+\sqrt{15}}{2}\right)^{2} \times \mathrm{r}^{2}$
10.(C)

Hypotenuse $=\sqrt{12^{2}+5^{2}}=13 \mathrm{~cm}$
Volume of resultant double cone $=\frac{\pi}{3 h} l^{2} b^{2}=\frac{\pi}{3 \times 13} \times 12^{2} \times 5^{2}=\frac{1200 \pi}{13} \mathrm{~cm}^{3}$

Matrix match

1. $(\mathrm{A}-\mathrm{Q}, \mathrm{B}-\mathrm{P}, \mathrm{C}-\mathrm{S}, \mathrm{D}-\mathrm{R})$
2. $(A-S, B-P Q, C-P Q R, D-S)$
(A) (S)

$$
\begin{aligned}
& x^{\log _{3} x}=9 \\
& \log _{3} x \log _{3} x=\log _{3} 3^{2}
\end{aligned}
$$

$$
\left(\log _{3} x\right)^{2}=2
$$

$$
\log _{3} x= \pm \sqrt{2} \Rightarrow x=3^{ \pm \sqrt{2}}
$$

(B) (PQ)

$$
\begin{aligned}
& \log \left(35-x^{3}\right)=3 \log (5-x) \\
& 35-x^{3}=(5-x)^{3} \\
& \Rightarrow 35-x^{3}=125-x^{3}-3 \times 25 x+3 x^{2} \times 5
\end{aligned}
$$

$$
=15 x^{2}-75 x+90=0
$$

$$
x^{2}-5 x+6=0
$$

$$
x^{2}-3 x-2 x+6=0
$$

$$
x(x-3)-2(x-3)=0
$$

$$
(x-2)(x-3)=0
$$

$$
x=2, x=3
$$

(C) (PQR)

$$
\begin{aligned}
& 9^{\log _{1 / 3}(x+2)}=5^{\log _{1 / 5}\left(2 x^{2}+8\right)} \\
& \Rightarrow 3^{2 \log _{\left(\frac{1}{3}\right)}(x+2)}=5^{\left.\log _{\left(\frac{1}{5}\right)}\right)}\left(2 x^{2}+8\right) \\
& (x+2)^{-2}=\left(2 x^{2}+8\right)^{-1} \\
& 2 x^{2}+8=x^{2}+4 x+4 \\
& \Rightarrow x^{2}-4 x+4=0 \\
& \therefore x=2,2
\end{aligned}
$$

(D) (S)

$$
2^{2\left(x^{2}+1\right)}-9.2^{\left(\mathrm{x}^{2}+1\right)}+8=0
$$

Let $2^{x^{2}+1}=y$

$$
\begin{aligned}
& y^{2}-9 y+8=0 \\
& y=8, y=1 \\
& 2^{x^{2}+1}=8,2^{x^{2}+1}=2^{3} \\
& x= \pm \sqrt{2}
\end{aligned}
$$

Integer

1. (5)
$\left(x^{2}-7 x+11\right)^{x^{2}-11 x+30}=1$
The LHS can only be 1 if the base is 1 or -1 or the exponent is 0
Case $-1: x^{2}-11 x+30=0$

$$
X=6,5
$$

Case $-2: x^{2}-7 x+11=1$

$$
x=5,2
$$

Case $-3: x^{2}-7 x+11=-1$ and $x^{2}-11 x+30$ must be even
$x=3$ or $x=4$ (for $x=3, x=4$, power is even)
The possible solution is $2,3,4,5,6$
No. of real solution are 5 .
2. (2)
3. (8)
$\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots=\frac{\pi^{2}}{6}$
$\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots=\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots ..\right)-\left(\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\ldots \ldots.\right)$
$=\frac{\pi^{2}}{6}-\frac{1}{4}\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots ..\right)$
$=\frac{\pi^{2}}{6}-\frac{1}{4}\left(\frac{\pi^{2}}{6}\right)=\frac{4 \pi^{2}-\pi^{2}}{24}=\frac{3 \pi^{2}}{24}=\frac{\pi^{2}}{8}$
4. (1)
5. (4)

To have least no of cube one must cut largest cube of all with side 15
So left with $3 \times 15 \times 15$ and $6 \times 15 \times 18$
From $3 \times 15 \times 15=\frac{3 \times 15 \times 15}{3 \times 3 \times 3}=25$ cubes
From $6 \times 15 \times 18,6 \times 6 \times 6$ cube will be cut.
So 6 such cube can be cutoff.
Remaining size $=3 \times 6 \times 18$

Cubes $\frac{3 \times 6 \times 18}{3 \times 3 \times 3}=12$
$1+25+6+12=44$
$\mathrm{a}=4$
6. (2)

Construct AE such that
$\mathrm{DE}=\mathrm{EC}$
Now, $\triangle \mathrm{ADE}$ becomes equilateral
$\Rightarrow \angle \mathrm{BAE}=180^{\circ}-\angle \mathrm{D}-\angle \mathrm{DAE}=60^{\circ}$
$\therefore \angle \mathrm{EAC}=\frac{60^{\circ}}{2}=30^{\circ}$
$\Rightarrow \angle \mathrm{DAC}=90^{\circ}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{AC}}=\frac{1}{\sqrt{3}}$

$\Rightarrow \mathrm{k}=2$
7. (5)

We can let this circle represent the ferris wheel with center O, and C represent the desired point 10 feet above the bottom. Draw a diagram like the one above. We find out $\triangle \mathrm{OBC}$ is a $30-60-90$ triangle. That means $\angle \mathrm{BOC}=60^{\circ}$ and the ferris wheel has made $\frac{60}{360}=\frac{1}{6}$ of a revolution. Therefore, the time it takes to travel that much of a distance is $\frac{1}{6}$ th of a minute, or 10 seconds. The answer is 10 so, $k=5$.
 Alternatively, we could also say that $\triangle A B C$ is congruent to $\triangle O B C$ by SAS, so $A C$ is 20 , and $\triangle A O C$ is equilateral, and $\angle B O C=60^{\circ}$
8. (1)

Probability $=\frac{4 \cdot 3 \cdot 3+3 \cdot 4 \cdot 2}{7 \cdot 6 \cdot 5}=\frac{60}{210}=\frac{2}{7}=\frac{\mathrm{p}}{\mathrm{q}}$.

$$
4 p-q=4 \times 2-7=1
$$

